- NAME
- DESCRIPTION
- "Gimme" Values
- Array Manipulation Functions
- Callback Functions
- Character classes
- Cloning an interpreter
- CV Manipulation Functions
- Embedding Functions
- Functions in file pp_pack.c
- Global Variables
- GV Functions
- Handy Values
- Hash Manipulation Functions
- Magical Functions
- Memory Management
- Miscellaneous Functions
- Numeric functions
- Optree Manipulation Functions
- Pad Data Structures
- Stack Manipulation Macros
- SV Flags
- SV Manipulation Functions
- Unicode Support
- Variables created by
xsubpp
andxsubpp
internal functions - Warning and Dieing
- AUTHORS
- SEE ALSO
NAME
perlapi - autogenerated documentation for the perl public API
DESCRIPTION
This file contains the documentation of the perl public API generated by embed.pl, specifically a listing of functions, macros, flags, and variables that may be used by extension writers. The interfaces of any functions that are not listed here are subject to change without notice. For this reason, blindly using functions listed in proto.h is to be avoided when writing extensions.
Note that all Perl API global variables must be referenced with the PL_
prefix. Some macros are provided for compatibility with the older,
unadorned names, but this support may be disabled in a future release.
The listing is alphabetical, case insensitive.
"Gimme" Values
- GIMME
A backward-compatible version of
GIMME_V
which can only returnG_SCALAR
orG_ARRAY
; in a void context, it returnsG_SCALAR
. Deprecated. UseGIMME_V
instead.U32 GIMME
- GIMME_V
The XSUB-writer's equivalent to Perl's
wantarray
. ReturnsG_VOID
,G_SCALAR
orG_ARRAY
for void, scalar or list context, respectively.U32 GIMME_V
- G_ARRAY
Used to indicate list context. See
GIMME_V
,GIMME
and perlcall. - G_DISCARD
Indicates that arguments returned from a callback should be discarded. See perlcall.
- G_EVAL
Used to force a Perl
eval
wrapper around a callback. See perlcall. - G_NOARGS
Indicates that no arguments are being sent to a callback. See perlcall.
- G_SCALAR
Used to indicate scalar context. See
GIMME_V
,GIMME
, and perlcall. - G_VOID
Used to indicate void context. See
GIMME_V
and perlcall.
Array Manipulation Functions
- AvFILL
Same as
av_len()
. Deprecated, useav_len()
instead.int AvFILL(AV* av)
- av_clear
Clears an array, making it empty. Does not free the memory used by the array itself.
void av_clear(AV* ar)
- av_delete
Deletes the element indexed by
key
from the array. Returns the deleted element. Ifflags
equalsG_DISCARD
, the element is freed and null is returned.SV* av_delete(AV* ar, I32 key, I32 flags)
- av_exists
Returns true if the element indexed by
key
has been initialized.This relies on the fact that uninitialized array elements are set to
&PL_sv_undef
.bool av_exists(AV* ar, I32 key)
- av_extend
Pre-extend an array. The
key
is the index to which the array should be extended.void av_extend(AV* ar, I32 key)
- av_fetch
Returns the SV at the specified index in the array. The
key
is the index. Iflval
is set then the fetch will be part of a store. Check that the return value is non-null before dereferencing it to aSV*
.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied arrays.
SV** av_fetch(AV* ar, I32 key, I32 lval)
- av_fill
Ensure than an array has a given number of elements, equivalent to Perl's
$#array = $fill;
.void av_fill(AV* ar, I32 fill)
- av_len
Returns the highest index in the array. Returns -1 if the array is empty.
I32 av_len(AV* ar)
- av_make
Creates a new AV and populates it with a list of SVs. The SVs are copied into the array, so they may be freed after the call to av_make. The new AV will have a reference count of 1.
AV* av_make(I32 size, SV** svp)
- av_pop
Pops an SV off the end of the array. Returns
&PL_sv_undef
if the array is empty.SV* av_pop(AV* ar)
- av_push
Pushes an SV onto the end of the array. The array will grow automatically to accommodate the addition.
void av_push(AV* ar, SV* val)
- av_shift
Shifts an SV off the beginning of the array.
SV* av_shift(AV* ar)
- av_store
Stores an SV in an array. The array index is specified as
key
. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the array (as in the case of tied arrays). Otherwise it can be dereferenced to get the originalSV*
. Note that the caller is responsible for suitably incrementing the reference count ofval
before the call, and decrementing it if the function returned NULL.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied arrays.
SV** av_store(AV* ar, I32 key, SV* val)
- av_undef
Undefines the array. Frees the memory used by the array itself.
void av_undef(AV* ar)
- av_unshift
Unshift the given number of
undef
values onto the beginning of the array. The array will grow automatically to accommodate the addition. You must then useav_store
to assign values to these new elements.void av_unshift(AV* ar, I32 num)
- get_av
Returns the AV of the specified Perl array. If
create
is set and the Perl variable does not exist then it will be created. Ifcreate
is not set and the variable does not exist then NULL is returned.NOTE: the perl_ form of this function is deprecated.
AV* get_av(const char* name, I32 create)
- newAV
Creates a new AV. The reference count is set to 1.
AV* newAV()
- sortsv
Sort an array. Here is an example:
sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
See lib/sort.pm for details about controlling the sorting algorithm.
void sortsv(SV** array, size_t num_elts, SVCOMPARE_t cmp)
Callback Functions
- call_argv
Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_argv(const char* sub_name, I32 flags, char** argv)
- call_method
Performs a callback to the specified Perl method. The blessed object must be on the stack. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_method(const char* methname, I32 flags)
- call_pv
Performs a callback to the specified Perl sub. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_pv(const char* sub_name, I32 flags)
- call_sv
Performs a callback to the Perl sub whose name is in the SV. See perlcall.
NOTE: the perl_ form of this function is deprecated.
I32 call_sv(SV* sv, I32 flags)
- ENTER
Opening bracket on a callback. See
LEAVE
and perlcall.ENTER;
- eval_pv
Tells Perl to
eval
the given string and return an SV* result.NOTE: the perl_ form of this function is deprecated.
SV* eval_pv(const char* p, I32 croak_on_error)
- eval_sv
Tells Perl to
eval
the string in the SV.NOTE: the perl_ form of this function is deprecated.
I32 eval_sv(SV* sv, I32 flags)
- FREETMPS
Closing bracket for temporaries on a callback. See
SAVETMPS
and perlcall.FREETMPS;
- LEAVE
Closing bracket on a callback. See
ENTER
and perlcall.LEAVE;
- SAVETMPS
Opening bracket for temporaries on a callback. See
FREETMPS
and perlcall.SAVETMPS;
Character classes
- isALNUM
Returns a boolean indicating whether the C
char
is an ASCII alphanumeric character (including underscore) or digit.bool isALNUM(char ch)
- isALPHA
Returns a boolean indicating whether the C
char
is an ASCII alphabetic character.bool isALPHA(char ch)
- isDIGIT
Returns a boolean indicating whether the C
char
is an ASCII digit.bool isDIGIT(char ch)
- isLOWER
Returns a boolean indicating whether the C
char
is a lowercase character.bool isLOWER(char ch)
- isSPACE
Returns a boolean indicating whether the C
char
is whitespace.bool isSPACE(char ch)
- isUPPER
Returns a boolean indicating whether the C
char
is an uppercase character.bool isUPPER(char ch)
- toLOWER
Converts the specified character to lowercase.
char toLOWER(char ch)
- toUPPER
Converts the specified character to uppercase.
char toUPPER(char ch)
Cloning an interpreter
- perl_clone
Create and return a new interpreter by cloning the current one.
perl_clone takes these flags as parameters:
CLONEf_COPY_STACKS - is used to, well, copy the stacks also, without it we only clone the data and zero the stacks, with it we copy the stacks and the new perl interpreter is ready to run at the exact same point as the previous one. The pseudo-fork code uses COPY_STACKS while the threads->new doesn't.
CLONEf_KEEP_PTR_TABLE perl_clone keeps a ptr_table with the pointer of the old variable as a key and the new variable as a value, this allows it to check if something has been cloned and not clone it again but rather just use the value and increase the refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill the ptr_table using the function
ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;
, reason to keep it around is if you want to dup some of your own variable who are outside the graph perl scans, example of this code is in threads.xs createCLONEf_CLONE_HOST This is a win32 thing, it is ignored on unix, it tells perls win32host code (which is c++) to clone itself, this is needed on win32 if you want to run two threads at the same time, if you just want to do some stuff in a separate perl interpreter and then throw it away and return to the original one, you don't need to do anything.
PerlInterpreter* perl_clone(PerlInterpreter* interp, UV flags)
CV Manipulation Functions
- CvSTASH
Returns the stash of the CV.
HV* CvSTASH(CV* cv)
- get_cv
Returns the CV of the specified Perl subroutine. If
create
is set and the Perl subroutine does not exist then it will be declared (which has the same effect as sayingsub name;
). Ifcreate
is not set and the subroutine does not exist then NULL is returned.NOTE: the perl_ form of this function is deprecated.
CV* get_cv(const char* name, I32 create)
Embedding Functions
- cv_undef
Clear out all the active components of a CV. This can happen either by an explicit
undef &foo
, or by the reference count going to zero. In the former case, we keep the CvOUTSIDE pointer, so that any anonymous children can still follow the full lexical scope chain.void cv_undef(CV* cv)
- load_module
Loads the module whose name is pointed to by the string part of name. Note that the actual module name, not its filename, should be given. Eg, "Foo::Bar" instead of "Foo/Bar.pm". flags can be any of PERL_LOADMOD_DENY, PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS (or 0 for no flags). ver, if specified, provides version semantics similar to
use Foo::Bar VERSION
. The optional trailing SV* arguments can be used to specify arguments to the module's import() method, similar touse Foo::Bar VERSION LIST
.void load_module(U32 flags, SV* name, SV* ver, ...)
- nothreadhook
Stub that provides thread hook for perl_destruct when there are no threads.
int nothreadhook()
- perl_alloc
Allocates a new Perl interpreter. See perlembed.
PerlInterpreter* perl_alloc()
- perl_construct
Initializes a new Perl interpreter. See perlembed.
void perl_construct(PerlInterpreter* interp)
- perl_destruct
Shuts down a Perl interpreter. See perlembed.
int perl_destruct(PerlInterpreter* interp)
- perl_free
Releases a Perl interpreter. See perlembed.
void perl_free(PerlInterpreter* interp)
- perl_parse
Tells a Perl interpreter to parse a Perl script. See perlembed.
int perl_parse(PerlInterpreter* interp, XSINIT_t xsinit, int argc, char** argv, char** env)
- perl_run
Tells a Perl interpreter to run. See perlembed.
int perl_run(PerlInterpreter* interp)
- require_pv
Tells Perl to
require
the file named by the string argument. It is analogous to the Perl codeeval "require '$file'"
. It's even implemented that way; consider using load_module instead.NOTE: the perl_ form of this function is deprecated.
void require_pv(const char* pv)
Functions in file pp_pack.c
- packlist
The engine implementing pack() Perl function.
void packlist(SV *cat, char *pat, char *patend, SV **beglist, SV **endlist)
- pack_cat
The engine implementing pack() Perl function. Note: parameters next_in_list and flags are not used. This call should not be used; use packlist instead.
void pack_cat(SV *cat, char *pat, char *patend, SV **beglist, SV **endlist, SV ***next_in_list, U32 flags)
- unpackstring
The engine implementing unpack() Perl function.
unpackstring
puts the extracted list items on the stack and returns the number of elements. IssuePUTBACK
before andSPAGAIN
after the call to this function.I32 unpackstring(char *pat, char *patend, char *s, char *strend, U32 flags)
- unpack_str
The engine implementing unpack() Perl function. Note: parameters strbeg, new_s and ocnt are not used. This call should not be used, use unpackstring instead.
I32 unpack_str(char *pat, char *patend, char *s, char *strbeg, char *strend, char **new_s, I32 ocnt, U32 flags)
Global Variables
- PL_modglobal
PL_modglobal
is a general purpose, interpreter global HV for use by extensions that need to keep information on a per-interpreter basis. In a pinch, it can also be used as a symbol table for extensions to share data among each other. It is a good idea to use keys prefixed by the package name of the extension that owns the data.HV* PL_modglobal
- PL_na
A convenience variable which is typically used with
SvPV
when one doesn't care about the length of the string. It is usually more efficient to either declare a local variable and use that instead or to use theSvPV_nolen
macro.STRLEN PL_na
- PL_sv_no
This is the
false
SV. SeePL_sv_yes
. Always refer to this as&PL_sv_no
.SV PL_sv_no
- PL_sv_undef
This is the
undef
SV. Always refer to this as&PL_sv_undef
.SV PL_sv_undef
- PL_sv_yes
This is the
true
SV. SeePL_sv_no
. Always refer to this as&PL_sv_yes
.SV PL_sv_yes
GV Functions
- GvSV
Return the SV from the GV.
SV* GvSV(GV* gv)
- gv_fetchmeth
Returns the glob with the given
name
and a defined subroutine orNULL
. The glob lives in the givenstash
, or in the stashes accessible via @ISA and UNIVERSAL::.The argument
level
should be either 0 or -1. Iflevel==0
, as a side-effect creates a glob with the givenname
in the givenstash
which in the case of success contains an alias for the subroutine, and sets up caching info for this glob. Similarly for all the searched stashes.This function grants
"SUPER"
token as a postfix of the stash name. The GV returned fromgv_fetchmeth
may be a method cache entry, which is not visible to Perl code. So when callingcall_sv
, you should not use the GV directly; instead, you should use the method's CV, which can be obtained from the GV with theGvCV
macro.GV* gv_fetchmeth(HV* stash, const char* name, STRLEN len, I32 level)
- gv_fetchmethod
GV* gv_fetchmethod(HV* stash, const char* name)
- gv_fetchmethod_autoload
Returns the glob which contains the subroutine to call to invoke the method on the
stash
. In fact in the presence of autoloading this may be the glob for "AUTOLOAD". In this case the corresponding variable $AUTOLOAD is already setup.The third parameter of
gv_fetchmethod_autoload
determines whether AUTOLOAD lookup is performed if the given method is not present: non-zero means yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Callinggv_fetchmethod
is equivalent to callinggv_fetchmethod_autoload
with a non-zeroautoload
parameter.These functions grant
"SUPER"
token as a prefix of the method name. Note that if you want to keep the returned glob for a long time, you need to check for it being "AUTOLOAD", since at the later time the call may load a different subroutine due to $AUTOLOAD changing its value. Use the glob created via a side effect to do this.These functions have the same side-effects and as
gv_fetchmeth
withlevel==0
.name
should be writable if contains':'
or' ''
. The warning against passing the GV returned bygv_fetchmeth
tocall_sv
apply equally to these functions.GV* gv_fetchmethod_autoload(HV* stash, const char* name, I32 autoload)
- gv_fetchmeth_autoload
Same as gv_fetchmeth(), but looks for autoloaded subroutines too. Returns a glob for the subroutine.
For an autoloaded subroutine without a GV, will create a GV even if
level < 0
. For an autoloaded subroutine without a stub, GvCV() of the result may be zero.GV* gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN len, I32 level)
- gv_stashpv
Returns a pointer to the stash for a specified package.
name
should be a valid UTF-8 string and must be null-terminated. Ifcreate
is set then the package will be created if it does not already exist. Ifcreate
is not set and the package does not exist then NULL is returned.HV* gv_stashpv(const char* name, I32 create)
- gv_stashpvn
Returns a pointer to the stash for a specified package.
name
should be a valid UTF-8 string. Thenamelen
parameter indicates the length of thename
, in bytes. Ifcreate
is set then the package will be created if it does not already exist. Ifcreate
is not set and the package does not exist then NULL is returned.HV* gv_stashpvn(const char* name, U32 namelen, I32 create)
- gv_stashsv
Returns a pointer to the stash for a specified package, which must be a valid UTF-8 string. See
gv_stashpv
.HV* gv_stashsv(SV* sv, I32 create)
Handy Values
- Nullav
Null AV pointer.
- Nullch
Null character pointer.
- Nullcv
Null CV pointer.
- Nullhv
Null HV pointer.
- Nullsv
Null SV pointer.
Hash Manipulation Functions
- get_hv
Returns the HV of the specified Perl hash. If
create
is set and the Perl variable does not exist then it will be created. Ifcreate
is not set and the variable does not exist then NULL is returned.NOTE: the perl_ form of this function is deprecated.
HV* get_hv(const char* name, I32 create)
- HEf_SVKEY
This flag, used in the length slot of hash entries and magic structures, specifies the structure contains an
SV*
pointer where achar*
pointer is to be expected. (For information only--not to be used). - HeHASH
Returns the computed hash stored in the hash entry.
U32 HeHASH(HE* he)
- HeKEY
Returns the actual pointer stored in the key slot of the hash entry. The pointer may be either
char*
orSV*
, depending on the value ofHeKLEN()
. Can be assigned to. TheHePV()
orHeSVKEY()
macros are usually preferable for finding the value of a key.void* HeKEY(HE* he)
- HeKLEN
If this is negative, and amounts to
HEf_SVKEY
, it indicates the entry holds anSV*
key. Otherwise, holds the actual length of the key. Can be assigned to. TheHePV()
macro is usually preferable for finding key lengths.STRLEN HeKLEN(HE* he)
- HePV
Returns the key slot of the hash entry as a
char*
value, doing any necessary dereferencing of possiblySV*
keys. The length of the string is placed inlen
(this is a macro, so do not use&len
). If you do not care about what the length of the key is, you may use the global variablePL_na
, though this is rather less efficient than using a local variable. Remember though, that hash keys in perl are free to contain embedded nulls, so usingstrlen()
or similar is not a good way to find the length of hash keys. This is very similar to theSvPV()
macro described elsewhere in this document.char* HePV(HE* he, STRLEN len)
- HeSVKEY
Returns the key as an
SV*
, orNullsv
if the hash entry does not contain anSV*
key.SV* HeSVKEY(HE* he)
- HeSVKEY_force
Returns the key as an
SV*
. Will create and return a temporary mortalSV*
if the hash entry contains only achar*
key.SV* HeSVKEY_force(HE* he)
- HeSVKEY_set
Sets the key to a given
SV*
, taking care to set the appropriate flags to indicate the presence of anSV*
key, and returns the sameSV*
.SV* HeSVKEY_set(HE* he, SV* sv)
- HeVAL
Returns the value slot (type
SV*
) stored in the hash entry.SV* HeVAL(HE* he)
- HvNAME
Returns the package name of a stash. See
SvSTASH
,CvSTASH
.char* HvNAME(HV* stash)
- hv_clear
Clears a hash, making it empty.
void hv_clear(HV* tb)
- hv_clear_placeholders
Clears any placeholders from a hash. If a restricted hash has any of its keys marked as readonly and the key is subsequently deleted, the key is not actually deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags it so it will be ignored by future operations such as iterating over the hash, but will still allow the hash to have a value reassigned to the key at some future point. This function clears any such placeholder keys from the hash. See Hash::Util::lock_keys() for an example of its use.
void hv_clear_placeholders(HV* hb)
- hv_delete
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned to the caller. The
klen
is the length of the key. Theflags
value will normally be zero; if set to G_DISCARD then NULL will be returned.SV* hv_delete(HV* tb, const char* key, I32 klen, I32 flags)
- hv_delete_ent
Deletes a key/value pair in the hash. The value SV is removed from the hash and returned to the caller. The
flags
value will normally be zero; if set to G_DISCARD then NULL will be returned.hash
can be a valid precomputed hash value, or 0 to ask for it to be computed.SV* hv_delete_ent(HV* tb, SV* key, I32 flags, U32 hash)
- hv_exists
Returns a boolean indicating whether the specified hash key exists. The
klen
is the length of the key.bool hv_exists(HV* tb, const char* key, I32 klen)
- hv_exists_ent
Returns a boolean indicating whether the specified hash key exists.
hash
can be a valid precomputed hash value, or 0 to ask for it to be computed.bool hv_exists_ent(HV* tb, SV* key, U32 hash)
- hv_fetch
Returns the SV which corresponds to the specified key in the hash. The
klen
is the length of the key. Iflval
is set then the fetch will be part of a store. Check that the return value is non-null before dereferencing it to anSV*
.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
SV** hv_fetch(HV* tb, const char* key, I32 klen, I32 lval)
- hv_fetch_ent
Returns the hash entry which corresponds to the specified key in the hash.
hash
must be a valid precomputed hash number for the givenkey
, or 0 if you want the function to compute it. IFlval
is set then the fetch will be part of a store. Make sure the return value is non-null before accessing it. The return value whentb
is a tied hash is a pointer to a static location, so be sure to make a copy of the structure if you need to store it somewhere.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
HE* hv_fetch_ent(HV* tb, SV* key, I32 lval, U32 hash)
- hv_iterinit
Prepares a starting point to traverse a hash table. Returns the number of keys in the hash (i.e. the same as
HvKEYS(tb)
). The return value is currently only meaningful for hashes without tie magic.NOTE: Before version 5.004_65,
hv_iterinit
used to return the number of hash buckets that happen to be in use. If you still need that esoteric value, you can get it through the macroHvFILL(tb)
.I32 hv_iterinit(HV* tb)
- hv_iterkey
Returns the key from the current position of the hash iterator. See
hv_iterinit
.char* hv_iterkey(HE* entry, I32* retlen)
- hv_iterkeysv
Returns the key as an
SV*
from the current position of the hash iterator. The return value will always be a mortal copy of the key. Also seehv_iterinit
.SV* hv_iterkeysv(HE* entry)
- hv_iternext
Returns entries from a hash iterator. See
hv_iterinit
.You may call
hv_delete
orhv_delete_ent
on the hash entry that the iterator currently points to, without losing your place or invalidating your iterator. Note that in this case the current entry is deleted from the hash with your iterator holding the last reference to it. Your iterator is flagged to free the entry on the next call tohv_iternext
, so you must not discard your iterator immediately else the entry will leak - callhv_iternext
to trigger the resource deallocation.HE* hv_iternext(HV* tb)
- hv_iternextsv
Performs an
hv_iternext
,hv_iterkey
, andhv_iterval
in one operation.SV* hv_iternextsv(HV* hv, char** key, I32* retlen)
- hv_iternext_flags
Returns entries from a hash iterator. See
hv_iterinit
andhv_iternext
. Theflags
value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is set the placeholders keys (for restricted hashes) will be returned in addition to normal keys. By default placeholders are automatically skipped over. Currently a placeholder is implemented with a value that is&Perl_sv_placeholder
. Note that the implementation of placeholders and restricted hashes may change, and the implementation currently is insufficiently abstracted for any change to be tidy.NOTE: this function is experimental and may change or be removed without notice.
HE* hv_iternext_flags(HV* tb, I32 flags)
- hv_iterval
Returns the value from the current position of the hash iterator. See
hv_iterkey
.SV* hv_iterval(HV* tb, HE* entry)
- hv_magic
Adds magic to a hash. See
sv_magic
.void hv_magic(HV* hv, GV* gv, int how)
- hv_scalar
Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
SV* hv_scalar(HV* hv)
- hv_store
Stores an SV in a hash. The hash key is specified as
key
andklen
is the length of the key. Thehash
parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise it can be dereferenced to get the originalSV*
. Note that the caller is responsible for suitably incrementing the reference count ofval
before the call, and decrementing it if the function returned NULL. Effectively a successful hv_store takes ownership of one reference toval
. This is usually what you want; a newly created SV has a reference count of one, so if all your code does is create SVs then store them in a hash, hv_store will own the only reference to the new SV, and your code doesn't need to do anything further to tidy up. hv_store is not implemented as a call to hv_store_ent, and does not create a temporary SV for the key, so if your key data is not already in SV form then use hv_store in preference to hv_store_ent.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
SV** hv_store(HV* tb, const char* key, I32 klen, SV* val, U32 hash)
- hv_store_ent
Stores
val
in a hash. The hash key is specified askey
. Thehash
parameter is the precomputed hash value; if it is zero then Perl will compute it. The return value is the new hash entry so created. It will be NULL if the operation failed or if the value did not need to be actually stored within the hash (as in the case of tied hashes). Otherwise the contents of the return value can be accessed using theHe?
macros described here. Note that the caller is responsible for suitably incrementing the reference count ofval
before the call, and decrementing it if the function returned NULL. Effectively a successful hv_store_ent takes ownership of one reference toval
. This is usually what you want; a newly created SV has a reference count of one, so if all your code does is create SVs then store them in a hash, hv_store will own the only reference to the new SV, and your code doesn't need to do anything further to tidy up. Note that hv_store_ent only reads thekey
; unlikeval
it does not take ownership of it, so maintaining the correct reference count onkey
is entirely the caller's responsibility. hv_store is not implemented as a call to hv_store_ent, and does not create a temporary SV for the key, so if your key data is not already in SV form then use hv_store in preference to hv_store_ent.See "Understanding the Magic of Tied Hashes and Arrays" in perlguts for more information on how to use this function on tied hashes.
HE* hv_store_ent(HV* tb, SV* key, SV* val, U32 hash)
- hv_undef
Undefines the hash.
void hv_undef(HV* tb)
- newHV
Creates a new HV. The reference count is set to 1.
HV* newHV()
Magical Functions
- mg_clear
Clear something magical that the SV represents. See
sv_magic
.int mg_clear(SV* sv)
- mg_copy
Copies the magic from one SV to another. See
sv_magic
.int mg_copy(SV* sv, SV* nsv, const char* key, I32 klen)
- mg_find
Finds the magic pointer for type matching the SV. See
sv_magic
.MAGIC* mg_find(SV* sv, int type)
- mg_free
Free any magic storage used by the SV. See
sv_magic
.int mg_free(SV* sv)
- mg_get
Do magic after a value is retrieved from the SV. See
sv_magic
.int mg_get(SV* sv)
- mg_length
Report on the SV's length. See
sv_magic
.U32 mg_length(SV* sv)
- mg_magical
Turns on the magical status of an SV. See
sv_magic
.void mg_magical(SV* sv)
- mg_set
Do magic after a value is assigned to the SV. See
sv_magic
.int mg_set(SV* sv)
- SvGETMAGIC
Invokes
mg_get
on an SV if it has 'get' magic. This macro evaluates its argument more than once.void SvGETMAGIC(SV* sv)
- SvLOCK
Arranges for a mutual exclusion lock to be obtained on sv if a suitable module has been loaded.
void SvLOCK(SV* sv)
- SvSETMAGIC
Invokes
mg_set
on an SV if it has 'set' magic. This macro evaluates its argument more than once.void SvSETMAGIC(SV* sv)
- SvSetMagicSV
Like
SvSetSV
, but does any set magic required afterwards.void SvSetMagicSV(SV* dsb, SV* ssv)
- SvSetMagicSV_nosteal
Like
SvSetSV_nosteal
, but does any set magic required afterwards.void SvSetMagicSV_nosteal(SV* dsv, SV* ssv)
- SvSetSV
Calls
sv_setsv
if dsv is not the same as ssv. May evaluate arguments more than once.void SvSetSV(SV* dsb, SV* ssv)
- SvSetSV_nosteal
Calls a non-destructive version of
sv_setsv
if dsv is not the same as ssv. May evaluate arguments more than once.void SvSetSV_nosteal(SV* dsv, SV* ssv)
- SvSHARE
Arranges for sv to be shared between threads if a suitable module has been loaded.
void SvSHARE(SV* sv)
- SvUNLOCK
Releases a mutual exclusion lock on sv if a suitable module has been loaded.
void SvUNLOCK(SV* sv)
Memory Management
- Copy
The XSUB-writer's interface to the C
memcpy
function. Thesrc
is the source,dest
is the destination,nitems
is the number of items, andtype
is the type. May fail on overlapping copies. See alsoMove
.void Copy(void* src, void* dest, int nitems, type)
- CopyD
Like
Copy
but returns dest. Useful for encouraging compilers to tail-call optimise.void * CopyD(void* src, void* dest, int nitems, type)
- Move
The XSUB-writer's interface to the C
memmove
function. Thesrc
is the source,dest
is the destination,nitems
is the number of items, andtype
is the type. Can do overlapping moves. See alsoCopy
.void Move(void* src, void* dest, int nitems, type)
- MoveD
Like
Move
but returns dest. Useful for encouraging compilers to tail-call optimise.void * MoveD(void* src, void* dest, int nitems, type)
- Newx
The XSUB-writer's interface to the C
malloc
function.void Newx(void* ptr, int nitems, type)
- Newxc
The XSUB-writer's interface to the C
malloc
function, with cast.void Newxc(void* ptr, int nitems, type, cast)
- Newxz
The XSUB-writer's interface to the C
malloc
function. The allocated memory is zeroed withmemzero
.In 5.9.3, we removed the 1st parameter, a debug aid, from the api. It was used to uniquely identify each usage of these allocation functions, but was deemed unnecessary with the availability of better memory tracking tools, valgrind for example.
void Newxz(void* ptr, int nitems, type)
- Poison
Fill up memory with a pattern (byte 0xAB over and over again) that hopefully catches attempts to access uninitialized memory.
void Poison(void* dest, int nitems, type)
- Renew
The XSUB-writer's interface to the C
realloc
function.void Renew(void* ptr, int nitems, type)
- Renewc
The XSUB-writer's interface to the C
realloc
function, with cast.void Renewc(void* ptr, int nitems, type, cast)
- Safefree
The XSUB-writer's interface to the C
free
function.void Safefree(void* ptr)
- savepv
Perl's version of
strdup()
. Returns a pointer to a newly allocated string which is a duplicate ofpv
. The size of the string is determined bystrlen()
. The memory allocated for the new string can be freed with theSafefree()
function.char* savepv(const char* pv)
- savepvn
Perl's version of what
strndup()
would be if it existed. Returns a pointer to a newly allocated string which is a duplicate of the firstlen
bytes frompv
. The memory allocated for the new string can be freed with theSafefree()
function.char* savepvn(const char* pv, I32 len)
- savesharedpv
A version of
savepv()
which allocates the duplicate string in memory which is shared between threads.char* savesharedpv(const char* pv)
- savesvpv
A version of
savepv()
/savepvn()
which gets the string to duplicate from the passed in SV usingSvPV()
char* savesvpv(SV* sv)
- StructCopy
This is an architecture-independent macro to copy one structure to another.
void StructCopy(type src, type dest, type)
- Zero
The XSUB-writer's interface to the C
memzero
function. Thedest
is the destination,nitems
is the number of items, andtype
is the type.void Zero(void* dest, int nitems, type)
- ZeroD
Like
Zero
but returns dest. Useful for encouraging compilers to tail-call optimise.void * ZeroD(void* dest, int nitems, type)
Miscellaneous Functions
- fbm_compile
Analyses the string in order to make fast searches on it using fbm_instr() -- the Boyer-Moore algorithm.
void fbm_compile(SV* sv, U32 flags)
- fbm_instr
Returns the location of the SV in the string delimited by
str
andstrend
. It returnsNullch
if the string can't be found. Thesv
does not have to be fbm_compiled, but the search will not be as fast then.char* fbm_instr(unsigned char* big, unsigned char* bigend, SV* littlesv, U32 flags)
- form
Takes a sprintf-style format pattern and conventional (non-SV) arguments and returns the formatted string.
(char *) Perl_form(pTHX_ const char* pat, ...)
can be used any place a string (char *) is required:
char * s = Perl_form("%d.%d",major,minor);
Uses a single private buffer so if you want to format several strings you must explicitly copy the earlier strings away (and free the copies when you are done).
char* form(const char* pat, ...)
- getcwd_sv
Fill the sv with current working directory
int getcwd_sv(SV* sv)
- strEQ
Test two strings to see if they are equal. Returns true or false.
bool strEQ(char* s1, char* s2)
- strGE
Test two strings to see if the first,
s1
, is greater than or equal to the second,s2
. Returns true or false.bool strGE(char* s1, char* s2)
- strGT
Test two strings to see if the first,
s1
, is greater than the second,s2
. Returns true or false.bool strGT(char* s1, char* s2)
- strLE
Test two strings to see if the first,
s1
, is less than or equal to the second,s2
. Returns true or false.bool strLE(char* s1, char* s2)
- strLT
Test two strings to see if the first,
s1
, is less than the second,s2
. Returns true or false.bool strLT(char* s1, char* s2)
- strNE
Test two strings to see if they are different. Returns true or false.
bool strNE(char* s1, char* s2)
- strnEQ
Test two strings to see if they are equal. The
len
parameter indicates the number of bytes to compare. Returns true or false. (A wrapper forstrncmp
).bool strnEQ(char* s1, char* s2, STRLEN len)
- strnNE
Test two strings to see if they are different. The
len
parameter indicates the number of bytes to compare. Returns true or false. (A wrapper forstrncmp
).bool strnNE(char* s1, char* s2, STRLEN len)
- sv_nolocking
Dummy routine which "locks" an SV when there is no locking module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nolocking(SV *)
- sv_nosharing
Dummy routine which "shares" an SV when there is no sharing module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nosharing(SV *)
- sv_nounlocking
Dummy routine which "unlocks" an SV when there is no locking module present. Exists to avoid test for a NULL function pointer and because it could potentially warn under some level of strict-ness.
void sv_nounlocking(SV *)
Numeric functions
- grok_bin
converts a string representing a binary number to numeric form.
On entry start and *len give the string to scan, *flags gives conversion flags, and result should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first invalid character. Unless
PERL_SCAN_SILENT_ILLDIGIT
is set in *flags, encountering an invalid character will also trigger a warning. On return *len is set to the length of the scanned string, and *flags gives output flags.If the value is <=
UV_MAX
it is returned as a UV, the output flags are clear, and nothing is written to *result. If the value is > UV_MAXgrok_bin
returns UV_MAX, setsPERL_SCAN_GREATER_THAN_UV_MAX
in the output flags, and writes the value to *result (or the value is discarded if result is NULL).The binary number may optionally be prefixed with "0b" or "b" unless
PERL_SCAN_DISALLOW_PREFIX
is set in *flags on entry. IfPERL_SCAN_ALLOW_UNDERSCORES
is set in *flags then the binary number may use '_' characters to separate digits.UV grok_bin(char* start, STRLEN* len, I32* flags, NV *result)
- grok_hex
converts a string representing a hex number to numeric form.
On entry start and *len give the string to scan, *flags gives conversion flags, and result should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first invalid character. Unless
PERL_SCAN_SILENT_ILLDIGIT
is set in *flags, encountering an invalid character will also trigger a warning. On return *len is set to the length of the scanned string, and *flags gives output flags.If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to *result. If the value is > UV_MAX
grok_hex
returns UV_MAX, setsPERL_SCAN_GREATER_THAN_UV_MAX
in the output flags, and writes the value to *result (or the value is discarded if result is NULL).The hex number may optionally be prefixed with "0x" or "x" unless
PERL_SCAN_DISALLOW_PREFIX
is set in *flags on entry. IfPERL_SCAN_ALLOW_UNDERSCORES
is set in *flags then the hex number may use '_' characters to separate digits.UV grok_hex(char* start, STRLEN* len, I32* flags, NV *result)
- grok_number
Recognise (or not) a number. The type of the number is returned (0 if unrecognised), otherwise it is a bit-ORed combination of IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).
If the value of the number can fit an in UV, it is returned in the *valuep IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV will never be set unless *valuep is valid, but *valuep may have been assigned to during processing even though IS_NUMBER_IN_UV is not set on return. If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when valuep is non-NULL, but no actual assignment (or SEGV) will occur.
IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were seen (in which case *valuep gives the true value truncated to an integer), and IS_NUMBER_NEG if the number is negative (in which case *valuep holds the absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the number is larger than a UV.
int grok_number(const char *pv, STRLEN len, UV *valuep)
- grok_numeric_radix
Scan and skip for a numeric decimal separator (radix).
bool grok_numeric_radix(const char **sp, const char *send)
- grok_oct
converts a string representing an octal number to numeric form.
On entry start and *len give the string to scan, *flags gives conversion flags, and result should be NULL or a pointer to an NV. The scan stops at the end of the string, or the first invalid character. Unless
PERL_SCAN_SILENT_ILLDIGIT
is set in *flags, encountering an invalid character will also trigger a warning. On return *len is set to the length of the scanned string, and *flags gives output flags.If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and nothing is written to *result. If the value is > UV_MAX
grok_oct
returns UV_MAX, setsPERL_SCAN_GREATER_THAN_UV_MAX
in the output flags, and writes the value to *result (or the value is discarded if result is NULL).If
PERL_SCAN_ALLOW_UNDERSCORES
is set in *flags then the octal number may use '_' characters to separate digits.UV grok_oct(char* start, STRLEN* len_p, I32* flags, NV *result)
- scan_bin
For backwards compatibility. Use
grok_bin
instead.NV scan_bin(char* start, STRLEN len, STRLEN* retlen)
- scan_hex
For backwards compatibility. Use
grok_hex
instead.NV scan_hex(char* start, STRLEN len, STRLEN* retlen)
- scan_oct
For backwards compatibility. Use
grok_oct
instead.NV scan_oct(char* start, STRLEN len, STRLEN* retlen)
Optree Manipulation Functions
- cv_const_sv
If
cv
is a constant sub eligible for inlining. returns the constant value returned by the sub. Otherwise, returns NULL.Constant subs can be created with
newCONSTSUB
or as described in "Constant Functions" in perlsub.SV* cv_const_sv(CV* cv)
- newCONSTSUB
Creates a constant sub equivalent to Perl
sub FOO () { 123 }
which is eligible for inlining at compile-time.CV* newCONSTSUB(HV* stash, char* name, SV* sv)
- newXS
Used by
xsubpp
to hook up XSUBs as Perl subs.
Pad Data Structures
- pad_sv
Get the value at offset po in the current pad. Use macro PAD_SV instead of calling this function directly.
SV* pad_sv(PADOFFSET po)
Stack Manipulation Macros
- dMARK
Declare a stack marker variable,
mark
, for the XSUB. SeeMARK
anddORIGMARK
.dMARK;
- dORIGMARK
Saves the original stack mark for the XSUB. See
ORIGMARK
.dORIGMARK;
- dSP
Declares a local copy of perl's stack pointer for the XSUB, available via the
SP
macro. SeeSP
.dSP;
- EXTEND
Used to extend the argument stack for an XSUB's return values. Once used, guarantees that there is room for at least
nitems
to be pushed onto the stack.void EXTEND(SP, int nitems)
- MARK
Stack marker variable for the XSUB. See
dMARK
. - mPUSHi
Push an integer onto the stack. The stack must have room for this element. Handles 'set' magic. Does not use
TARG
. See alsoPUSHi
,mXPUSHi
andXPUSHi
.void mPUSHi(IV iv)
- mPUSHn
Push a double onto the stack. The stack must have room for this element. Handles 'set' magic. Does not use
TARG
. See alsoPUSHn
,mXPUSHn
andXPUSHn
.void mPUSHn(NV nv)
- mPUSHp
Push a string onto the stack. The stack must have room for this element. The
len
indicates the length of the string. Handles 'set' magic. Does not useTARG
. See alsoPUSHp
,mXPUSHp
andXPUSHp
.void mPUSHp(char* str, STRLEN len)
- mPUSHu
Push an unsigned integer onto the stack. The stack must have room for this element. Handles 'set' magic. Does not use
TARG
. See alsoPUSHu
,mXPUSHu
andXPUSHu
.void mPUSHu(UV uv)
- mXPUSHi
Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic. Does not use
TARG
. See alsoXPUSHi
,mPUSHi
andPUSHi
.void mXPUSHi(IV iv)
- mXPUSHn
Push a double onto the stack, extending the stack if necessary. Handles 'set' magic. Does not use
TARG
. See alsoXPUSHn
,mPUSHn
andPUSHn
.void mXPUSHn(NV nv)
- mXPUSHp
Push a string onto the stack, extending the stack if necessary. The
len
indicates the length of the string. Handles 'set' magic. Does not useTARG
. See alsoXPUSHp
,mPUSHp
andPUSHp
.void mXPUSHp(char* str, STRLEN len)
- mXPUSHu
Push an unsigned integer onto the stack, extending the stack if necessary. Handles 'set' magic. Does not use
TARG
. See alsoXPUSHu
,mPUSHu
andPUSHu
.void mXPUSHu(UV uv)
- ORIGMARK
The original stack mark for the XSUB. See
dORIGMARK
. - POPi
Pops an integer off the stack.
IV POPi
- POPl
Pops a long off the stack.
long POPl
- POPn
Pops a double off the stack.
NV POPn
- POPp
Pops a string off the stack. Deprecated. New code should use POPpx.
char* POPp
- POPpbytex
Pops a string off the stack which must consist of bytes i.e. characters < 256.
char* POPpbytex
- POPpx
Pops a string off the stack.
char* POPpx
- POPs
Pops an SV off the stack.
SV* POPs
- PUSHi
Push an integer onto the stack. The stack must have room for this element. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemPUSHi
instead. See alsoXPUSHi
andmXPUSHi
.void PUSHi(IV iv)
- PUSHMARK
Opening bracket for arguments on a callback. See
PUTBACK
and perlcall.void PUSHMARK(SP)
- PUSHmortal
Push a new mortal SV onto the stack. The stack must have room for this element. Does not handle 'set' magic. Does not use
TARG
. See alsoPUSHs
,XPUSHmortal
andXPUSHs
.void PUSHmortal()
- PUSHn
Push a double onto the stack. The stack must have room for this element. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemPUSHn
instead. See alsoXPUSHn
andmXPUSHn
.void PUSHn(NV nv)
- PUSHp
Push a string onto the stack. The stack must have room for this element. The
len
indicates the length of the string. Handles 'set' magic. UsesTARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemPUSHp
instead. See alsoXPUSHp
andmXPUSHp
.void PUSHp(char* str, STRLEN len)
- PUSHs
Push an SV onto the stack. The stack must have room for this element. Does not handle 'set' magic. Does not use
TARG
. See alsoPUSHmortal
,XPUSHs
andXPUSHmortal
.void PUSHs(SV* sv)
- PUSHu
Push an unsigned integer onto the stack. The stack must have room for this element. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemPUSHu
instead. See alsoXPUSHu
andmXPUSHu
.void PUSHu(UV uv)
- PUTBACK
Closing bracket for XSUB arguments. This is usually handled by
xsubpp
. SeePUSHMARK
and perlcall for other uses.PUTBACK;
- SP
Stack pointer. This is usually handled by
xsubpp
. SeedSP
andSPAGAIN
. - SPAGAIN
Refetch the stack pointer. Used after a callback. See perlcall.
SPAGAIN;
- XPUSHi
Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemXPUSHi
instead. See alsoPUSHi
andmPUSHi
.void XPUSHi(IV iv)
- XPUSHmortal
Push a new mortal SV onto the stack, extending the stack if necessary. Does not handle 'set' magic. Does not use
TARG
. See alsoXPUSHs
,PUSHmortal
andPUSHs
.void XPUSHmortal()
- XPUSHn
Push a double onto the stack, extending the stack if necessary. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemXPUSHn
instead. See alsoPUSHn
andmPUSHn
.void XPUSHn(NV nv)
- XPUSHp
Push a string onto the stack, extending the stack if necessary. The
len
indicates the length of the string. Handles 'set' magic. UsesTARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemXPUSHp
instead. See alsoPUSHp
andmPUSHp
.void XPUSHp(char* str, STRLEN len)
- XPUSHs
Push an SV onto the stack, extending the stack if necessary. Does not handle 'set' magic. Does not use
TARG
. See alsoXPUSHmortal
,PUSHs
andPUSHmortal
.void XPUSHs(SV* sv)
- XPUSHu
Push an unsigned integer onto the stack, extending the stack if necessary. Handles 'set' magic. Uses
TARG
, sodTARGET
ordXSTARG
should be called to declare it. Do not call multipleTARG
-oriented macros to return lists from XSUB's - seemXPUSHu
instead. See alsoPUSHu
andmPUSHu
.void XPUSHu(UV uv)
- XSRETURN
Return from XSUB, indicating number of items on the stack. This is usually handled by
xsubpp
.void XSRETURN(int nitems)
- XSRETURN_EMPTY
Return an empty list from an XSUB immediately.
XSRETURN_EMPTY;
- XSRETURN_IV
Return an integer from an XSUB immediately. Uses
XST_mIV
.void XSRETURN_IV(IV iv)
- XSRETURN_NO
Return
&PL_sv_no
from an XSUB immediately. UsesXST_mNO
.XSRETURN_NO;
- XSRETURN_NV
Return a double from an XSUB immediately. Uses
XST_mNV
.void XSRETURN_NV(NV nv)
- XSRETURN_PV
Return a copy of a string from an XSUB immediately. Uses
XST_mPV
.void XSRETURN_PV(char* str)
- XSRETURN_UNDEF
Return
&PL_sv_undef
from an XSUB immediately. UsesXST_mUNDEF
.XSRETURN_UNDEF;
- XSRETURN_UV
Return an integer from an XSUB immediately. Uses
XST_mUV
.void XSRETURN_UV(IV uv)
- XSRETURN_YES
Return
&PL_sv_yes
from an XSUB immediately. UsesXST_mYES
.XSRETURN_YES;
- XST_mIV
Place an integer into the specified position
pos
on the stack. The value is stored in a new mortal SV.void XST_mIV(int pos, IV iv)
- XST_mNO
Place
&PL_sv_no
into the specified positionpos
on the stack.void XST_mNO(int pos)
- XST_mNV
Place a double into the specified position
pos
on the stack. The value is stored in a new mortal SV.void XST_mNV(int pos, NV nv)
- XST_mPV
Place a copy of a string into the specified position
pos
on the stack. The value is stored in a new mortal SV.void XST_mPV(int pos, char* str)
- XST_mUNDEF
Place
&PL_sv_undef
into the specified positionpos
on the stack.void XST_mUNDEF(int pos)
- XST_mYES
Place
&PL_sv_yes
into the specified positionpos
on the stack.void XST_mYES(int pos)
SV Flags
- svtype
An enum of flags for Perl types. These are found in the file sv.h in the
svtype
enum. Test these flags with theSvTYPE
macro. - SVt_IV
Integer type flag for scalars. See
svtype
. - SVt_NV
Double type flag for scalars. See
svtype
. - SVt_PV
Pointer type flag for scalars. See
svtype
. - SVt_PVAV
Type flag for arrays. See
svtype
. - SVt_PVCV
Type flag for code refs. See
svtype
. - SVt_PVHV
Type flag for hashes. See
svtype
. - SVt_PVMG
Type flag for blessed scalars. See
svtype
.
SV Manipulation Functions
- get_sv
Returns the SV of the specified Perl scalar. If
create
is set and the Perl variable does not exist then it will be created. Ifcreate
is not set and the variable does not exist then NULL is returned.NOTE: the perl_ form of this function is deprecated.
SV* get_sv(const char* name, I32 create)
- looks_like_number
Test if the content of an SV looks like a number (or is a number).
Inf
andInfinity
are treated as numbers (so will not issue a non-numeric warning), even if your atof() doesn't grok them.I32 looks_like_number(SV* sv)
- newRV_inc
Creates an RV wrapper for an SV. The reference count for the original SV is incremented.
SV* newRV_inc(SV* sv)
- newRV_noinc
Creates an RV wrapper for an SV. The reference count for the original SV is not incremented.
SV* newRV_noinc(SV *sv)
- NEWSV
Creates a new SV. A non-zero
len
parameter indicates the number of bytes of preallocated string space the SV should have. An extra byte for a tailing NUL is also reserved. (SvPOK is not set for the SV even if string space is allocated.) The reference count for the new SV is set to 1.id
is an integer id between 0 and 1299 (used to identify leaks).SV* NEWSV(int id, STRLEN len)
- newSV
Create a new null SV, or if len > 0, create a new empty SVt_PV type SV with an initial PV allocation of len+1. Normally accessed via the
NEWSV
macro.SV* newSV(STRLEN len)
- newSVhek
Creates a new SV from the hash key structure. It will generate scalars that point to the shared string table where possible. Returns a new (undefined) SV if the hek is NULL.
SV* newSVhek(const HEK *hek)
- newSViv
Creates a new SV and copies an integer into it. The reference count for the SV is set to 1.
SV* newSViv(IV i)
- newSVnv
Creates a new SV and copies a floating point value into it. The reference count for the SV is set to 1.
SV* newSVnv(NV n)
- newSVpv
Creates a new SV and copies a string into it. The reference count for the SV is set to 1. If
len
is zero, Perl will compute the length using strlen(). For efficiency, consider usingnewSVpvn
instead.SV* newSVpv(const char* s, STRLEN len)
- newSVpvf
Creates a new SV and initializes it with the string formatted like
sprintf
.SV* newSVpvf(const char* pat, ...)
- newSVpvn
Creates a new SV and copies a string into it. The reference count for the SV is set to 1. Note that if
len
is zero, Perl will create a zero length string. You are responsible for ensuring that the source string is at leastlen
bytes long. If thes
argument is NULL the new SV will be undefined.SV* newSVpvn(const char* s, STRLEN len)
- newSVpvn_share
Creates a new SV with its SvPVX_const pointing to a shared string in the string table. If the string does not already exist in the table, it is created first. Turns on READONLY and FAKE. The string's hash is stored in the UV slot of the SV; if the
hash
parameter is non-zero, that value is used; otherwise the hash is computed. The idea here is that as the string table is used for shared hash keys these strings will have SvPVX_const == HeKEY and hash lookup will avoid string compare.SV* newSVpvn_share(const char* s, I32 len, U32 hash)
- newSVrv
Creates a new SV for the RV,
rv
, to point to. Ifrv
is not an RV then it will be upgraded to one. Ifclassname
is non-null then the new SV will be blessed in the specified package. The new SV is returned and its reference count is 1.SV* newSVrv(SV* rv, const char* classname)
- newSVsv
Creates a new SV which is an exact duplicate of the original SV. (Uses
sv_setsv
).SV* newSVsv(SV* old)
- newSVuv
Creates a new SV and copies an unsigned integer into it. The reference count for the SV is set to 1.
SV* newSVuv(UV u)
- SvCUR
Returns the length of the string which is in the SV. See
SvLEN
.STRLEN SvCUR(SV* sv)
- SvCUR_set
Set the current length of the string which is in the SV. See
SvCUR
andSvIV_set
.void SvCUR_set(SV* sv, STRLEN len)
- SvEND
Returns a pointer to the last character in the string which is in the SV. See
SvCUR
. Access the character as *(SvEND(sv)).char* SvEND(SV* sv)
- SvGROW
Expands the character buffer in the SV so that it has room for the indicated number of bytes (remember to reserve space for an extra trailing NUL character). Calls
sv_grow
to perform the expansion if necessary. Returns a pointer to the character buffer.char * SvGROW(SV* sv, STRLEN len)
- SvIOK
Returns a boolean indicating whether the SV contains an integer.
bool SvIOK(SV* sv)
- SvIOKp
Returns a boolean indicating whether the SV contains an integer. Checks the private setting. Use
SvIOK
.bool SvIOKp(SV* sv)
- SvIOK_notUV
Returns a boolean indicating whether the SV contains a signed integer.
bool SvIOK_notUV(SV* sv)
- SvIOK_off
Unsets the IV status of an SV.
void SvIOK_off(SV* sv)
- SvIOK_on
Tells an SV that it is an integer.
void SvIOK_on(SV* sv)
- SvIOK_only
Tells an SV that it is an integer and disables all other OK bits.
void SvIOK_only(SV* sv)
- SvIOK_only_UV
Tells and SV that it is an unsigned integer and disables all other OK bits.
void SvIOK_only_UV(SV* sv)
- SvIOK_UV
Returns a boolean indicating whether the SV contains an unsigned integer.
bool SvIOK_UV(SV* sv)
- SvIsCOW
Returns a boolean indicating whether the SV is Copy-On-Write. (either shared hash key scalars, or full Copy On Write scalars if 5.9.0 is configured for COW)
bool SvIsCOW(SV* sv)
- SvIsCOW_shared_hash
Returns a boolean indicating whether the SV is Copy-On-Write shared hash key scalar.
bool SvIsCOW_shared_hash(SV* sv)
- SvIV
Coerces the given SV to an integer and returns it. See
SvIVx
for a version which guarantees to evaluate sv only once.IV SvIV(SV* sv)
- SvIVX
Returns the raw value in the SV's IV slot, without checks or conversions. Only use when you are sure SvIOK is true. See also
SvIV()
.IV SvIVX(SV* sv)
- SvIVx
Coerces the given SV to an integer and returns it. Guarantees to evaluate sv only once. Use the more efficient
SvIV
otherwise.IV SvIVx(SV* sv)
- SvIV_set
Set the value of the IV pointer in sv to val. It is possible to perform the same function of this macro with an lvalue assignment to
SvIVX
. With future Perls, however, it will be more efficient to useSvIV_set
instead of the lvalue assignment toSvIVX
.void SvIV_set(SV* sv, IV val)
- SvLEN
Returns the size of the string buffer in the SV, not including any part attributable to
SvOOK
. SeeSvCUR
.STRLEN SvLEN(SV* sv)
- SvLEN_set
Set the actual length of the string which is in the SV. See
SvIV_set
.void SvLEN_set(SV* sv, STRLEN len)
- SvMAGIC_set
Set the value of the MAGIC pointer in sv to val. See
SvIV_set
.void SvMAGIC_set(SV* sv, MAGIC* val)
- SvNIOK
Returns a boolean indicating whether the SV contains a number, integer or double.
bool SvNIOK(SV* sv)
- SvNIOKp
Returns a boolean indicating whether the SV contains a number, integer or double. Checks the private setting. Use
SvNIOK
.bool SvNIOKp(SV* sv)
- SvNIOK_off
Unsets the NV/IV status of an SV.
void SvNIOK_off(SV* sv)
- SvNOK
Returns a boolean indicating whether the SV contains a double.
bool SvNOK(SV* sv)
- SvNOKp
Returns a boolean indicating whether the SV contains a double. Checks the private setting. Use
SvNOK
.bool SvNOKp(SV* sv)
- SvNOK_off
Unsets the NV status of an SV.
void SvNOK_off(SV* sv)
- SvNOK_on
Tells an SV that it is a double.
void SvNOK_on(SV* sv)
- SvNOK_only
Tells an SV that it is a double and disables all other OK bits.
void SvNOK_only(SV* sv)
- SvNV
Coerce the given SV to a double and return it. See
SvNVx
for a version which guarantees to evaluate sv only once.NV SvNV(SV* sv)
- SvNVX
Returns the raw value in the SV's NV slot, without checks or conversions. Only use when you are sure SvNOK is true. See also
SvNV()
.NV SvNVX(SV* sv)
- SvNVx
Coerces the given SV to a double and returns it. Guarantees to evaluate sv only once. Use the more efficient
SvNV
otherwise.NV SvNVx(SV* sv)
- SvNV_set
Set the value of the NV pointer in sv to val. See
SvIV_set
.void SvNV_set(SV* sv, NV val)
- SvOK
Returns a boolean indicating whether the value is an SV. It also tells whether the value is defined or not.
bool SvOK(SV* sv)
- SvOOK
Returns a boolean indicating whether the SvIVX is a valid offset value for the SvPVX. This hack is used internally to speed up removal of characters from the beginning of a SvPV. When SvOOK is true, then the start of the allocated string buffer is really (SvPVX - SvIVX).
bool SvOOK(SV* sv)
- SvPOK
Returns a boolean indicating whether the SV contains a character string.
bool SvPOK(SV* sv)
- SvPOKp
Returns a boolean indicating whether the SV contains a character string. Checks the private setting. Use
SvPOK
.bool SvPOKp(SV* sv)
- SvPOK_off
Unsets the PV status of an SV.
void SvPOK_off(SV* sv)
- SvPOK_on
Tells an SV that it is a string.
void SvPOK_on(SV* sv)
- SvPOK_only
Tells an SV that it is a string and disables all other OK bits. Will also turn off the UTF-8 status.
void SvPOK_only(SV* sv)
- SvPOK_only_UTF8
Tells an SV that it is a string and disables all other OK bits, and leaves the UTF-8 status as it was.
void SvPOK_only_UTF8(SV* sv)
- SvPV
Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does not contain a string. The SV may cache the stringified version becoming
SvPOK
. Handles 'get' magic. See alsoSvPVx
for a version which guarantees to evaluate sv only once.char* SvPV(SV* sv, STRLEN len)
- SvPVbyte
Like
SvPV
, but converts sv to byte representation first if necessary.char* SvPVbyte(SV* sv, STRLEN len)
- SvPVbytex
Like
SvPV
, but converts sv to byte representation first if necessary. Guarantees to evaluate sv only once; use the more efficientSvPVbyte
otherwise.char* SvPVbytex(SV* sv, STRLEN len)
- SvPVbytex_force
Like
SvPV_force
, but converts sv to byte representation first if necessary. Guarantees to evaluate sv only once; use the more efficientSvPVbyte_force
otherwise.char* SvPVbytex_force(SV* sv, STRLEN len)
- SvPVbyte_force
Like
SvPV_force
, but converts sv to byte representation first if necessary.char* SvPVbyte_force(SV* sv, STRLEN len)
- SvPVbyte_nolen
Like
SvPV_nolen
, but converts sv to byte representation first if necessary.char* SvPVbyte_nolen(SV* sv)
- SvPVutf8
Like
SvPV
, but converts sv to utf8 first if necessary.char* SvPVutf8(SV* sv, STRLEN len)
- SvPVutf8x
Like
SvPV
, but converts sv to utf8 first if necessary. Guarantees to evaluate sv only once; use the more efficientSvPVutf8
otherwise.char* SvPVutf8x(SV* sv, STRLEN len)
- SvPVutf8x_force
Like
SvPV_force
, but converts sv to utf8 first if necessary. Guarantees to evaluate sv only once; use the more efficientSvPVutf8_force
otherwise.char* SvPVutf8x_force(SV* sv, STRLEN len)
- SvPVutf8_force
Like
SvPV_force
, but converts sv to utf8 first if necessary.char* SvPVutf8_force(SV* sv, STRLEN len)
- SvPVutf8_nolen
Like
SvPV_nolen
, but converts sv to utf8 first if necessary.char* SvPVutf8_nolen(SV* sv)
- SvPVX
Returns a pointer to the physical string in the SV. The SV must contain a string.
char* SvPVX(SV* sv)
- SvPVx
A version of
SvPV
which guarantees to evaluate sv only once.char* SvPVx(SV* sv, STRLEN len)
- SvPV_force
Like
SvPV
but will force the SV into containing just a string (SvPOK_only
). You want force if you are going to update theSvPVX
directly.char* SvPV_force(SV* sv, STRLEN len)
- SvPV_force_nomg
Like
SvPV
but will force the SV into containing just a string (SvPOK_only
). You want force if you are going to update theSvPVX
directly. Doesn't process magic.char* SvPV_force_nomg(SV* sv, STRLEN len)
- SvPV_nolen
Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does not contain a string. The SV may cache the stringified form becoming
SvPOK
. Handles 'get' magic.char* SvPV_nolen(SV* sv)
- SvPV_set
Set the value of the PV pointer in sv to val. See
SvIV_set
.void SvPV_set(SV* sv, char* val)
- SvREFCNT
Returns the value of the object's reference count.
U32 SvREFCNT(SV* sv)
- SvREFCNT_dec
Decrements the reference count of the given SV.
void SvREFCNT_dec(SV* sv)
- SvREFCNT_inc
Increments the reference count of the given SV.
SV* SvREFCNT_inc(SV* sv)
- SvROK
Tests if the SV is an RV.
bool SvROK(SV* sv)
- SvROK_off
Unsets the RV status of an SV.
void SvROK_off(SV* sv)
- SvROK_on
Tells an SV that it is an RV.
void SvROK_on(SV* sv)
- SvRV
Dereferences an RV to return the SV.
SV* SvRV(SV* sv)
- SvRV_set
Set the value of the RV pointer in sv to val. See
SvIV_set
.void SvRV_set(SV* sv, SV* val)
- SvSTASH
Returns the stash of the SV.
HV* SvSTASH(SV* sv)
- SvSTASH_set
Set the value of the STASH pointer in sv to val. See
SvIV_set
.void SvSTASH_set(SV* sv, STASH* val)
- SvTAINT
Taints an SV if tainting is enabled.
void SvTAINT(SV* sv)
- SvTAINTED
Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
bool SvTAINTED(SV* sv)
- SvTAINTED_off
Untaints an SV. Be very careful with this routine, as it short-circuits some of Perl's fundamental security features. XS module authors should not use this function unless they fully understand all the implications of unconditionally untainting the value. Untainting should be done in the standard perl fashion, via a carefully crafted regexp, rather than directly untainting variables.
void SvTAINTED_off(SV* sv)
- SvTAINTED_on
Marks an SV as tainted if tainting is enabled.
void SvTAINTED_on(SV* sv)
- SvTRUE
Returns a boolean indicating whether Perl would evaluate the SV as true or false, defined or undefined. Does not handle 'get' magic.
bool SvTRUE(SV* sv)
- SvTYPE
Returns the type of the SV. See
svtype
.svtype SvTYPE(SV* sv)
- SvUOK
Returns a boolean indicating whether the SV contains an unsigned integer.
void SvUOK(SV* sv)
- SvUPGRADE
Used to upgrade an SV to a more complex form. Uses
sv_upgrade
to perform the upgrade if necessary. Seesvtype
.void SvUPGRADE(SV* sv, svtype type)
- SvUTF8
Returns a boolean indicating whether the SV contains UTF-8 encoded data.
bool SvUTF8(SV* sv)
- SvUTF8_off
Unsets the UTF-8 status of an SV.
void SvUTF8_off(SV *sv)
- SvUTF8_on
Turn on the UTF-8 status of an SV (the data is not changed, just the flag). Do not use frivolously.
void SvUTF8_on(SV *sv)
- SvUV
Coerces the given SV to an unsigned integer and returns it. See
SvUVx
for a version which guarantees to evaluate sv only once.UV SvUV(SV* sv)
- SvUVX
Returns the raw value in the SV's UV slot, without checks or conversions. Only use when you are sure SvIOK is true. See also
SvUV()
.UV SvUVX(SV* sv)
- SvUVx
Coerces the given SV to an unsigned integer and returns it. Guarantees to evaluate sv only once. Use the more efficient
SvUV
otherwise.UV SvUVx(SV* sv)
- SvUV_set
Set the value of the UV pointer in sv to val. See
SvIV_set
.void SvUV_set(SV* sv, UV val)
- sv_2bool
This function is only called on magical items, and is only used by sv_true() or its macro equivalent.
bool sv_2bool(SV* sv)
- sv_2cv
Using various gambits, try to get a CV from an SV; in addition, try if possible to set
*st
and*gvp
to the stash and GV associated with it.CV* sv_2cv(SV* sv, HV** st, GV** gvp, I32 lref)
- sv_2io
Using various gambits, try to get an IO from an SV: the IO slot if its a GV; or the recursive result if we're an RV; or the IO slot of the symbol named after the PV if we're a string.
IO* sv_2io(SV* sv)
- sv_2iv
Return the integer value of an SV, doing any necessary string conversion, magic etc. Normally used via the
SvIV(sv)
andSvIVx(sv)
macros.IV sv_2iv(SV* sv)
- sv_2mortal
Marks an existing SV as mortal. The SV will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. SvTEMP() is turned on which means that the SV's string buffer can be "stolen" if this SV is copied. See also
sv_newmortal
andsv_mortalcopy
.SV* sv_2mortal(SV* sv)
- sv_2nv
Return the num value of an SV, doing any necessary string or integer conversion, magic etc. Normally used via the
SvNV(sv)
andSvNVx(sv)
macros.NV sv_2nv(SV* sv)
- sv_2pvbyte
Return a pointer to the byte-encoded representation of the SV, and set *lp to its length. May cause the SV to be downgraded from UTF-8 as a side-effect.
Usually accessed via the
SvPVbyte
macro.char* sv_2pvbyte(SV* sv, STRLEN* lp)
- sv_2pvbyte_nolen
Return a pointer to the byte-encoded representation of the SV. May cause the SV to be downgraded from UTF-8 as a side-effect.
Usually accessed via the
SvPVbyte_nolen
macro.char* sv_2pvbyte_nolen(SV* sv)
- sv_2pvutf8
Return a pointer to the UTF-8-encoded representation of the SV, and set *lp to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
Usually accessed via the
SvPVutf8
macro.char* sv_2pvutf8(SV* sv, STRLEN* lp)
- sv_2pvutf8_nolen
Return a pointer to the UTF-8-encoded representation of the SV. May cause the SV to be upgraded to UTF-8 as a side-effect.
Usually accessed via the
SvPVutf8_nolen
macro.char* sv_2pvutf8_nolen(SV* sv)
- sv_2pv_flags
Returns a pointer to the string value of an SV, and sets *lp to its length. If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string if necessary. Normally invoked via the
SvPV_flags
macro.sv_2pv()
andsv_2pv_nomg
usually end up here too.char* sv_2pv_flags(SV* sv, STRLEN* lp, I32 flags)
- sv_2pv_nolen
Like
sv_2pv()
, but doesn't return the length too. You should usually use the macro wrapperSvPV_nolen(sv)
instead. char* sv_2pv_nolen(SV* sv) - sv_2uv
Return the unsigned integer value of an SV, doing any necessary string conversion, magic etc. Normally used via the
SvUV(sv)
andSvUVx(sv)
macros.UV sv_2uv(SV* sv)
- sv_backoff
Remove any string offset. You should normally use the
SvOOK_off
macro wrapper instead.int sv_backoff(SV* sv)
- sv_bless
Blesses an SV into a specified package. The SV must be an RV. The package must be designated by its stash (see
gv_stashpv()
). The reference count of the SV is unaffected.SV* sv_bless(SV* sv, HV* stash)
- sv_catpv
Concatenates the string onto the end of the string which is in the SV. If the SV has the UTF-8 status set, then the bytes appended should be valid UTF-8. Handles 'get' magic, but not 'set' magic. See
sv_catpv_mg
.void sv_catpv(SV* sv, const char* ptr)
- sv_catpvf
Processes its arguments like
sprintf
and appends the formatted output to an SV. If the appended data contains "wide" characters (including, but not limited to, SVs with a UTF-8 PV formatted with %s, and characters >255 formatted with %c), the original SV might get upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. Seesv_catpvf_mg
. If the original SV was UTF-8, the pattern should be valid UTF-8; if the original SV was bytes, the pattern should be too.void sv_catpvf(SV* sv, const char* pat, ...)
- sv_catpvf_mg
Like
sv_catpvf
, but also handles 'set' magic.void sv_catpvf_mg(SV *sv, const char* pat, ...)
- sv_catpvn
Concatenates the string onto the end of the string which is in the SV. The
len
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes appended should be valid UTF-8. Handles 'get' magic, but not 'set' magic. Seesv_catpvn_mg
.void sv_catpvn(SV* sv, const char* ptr, STRLEN len)
- sv_catpvn_flags
Concatenates the string onto the end of the string which is in the SV. The
len
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes appended should be valid UTF-8. Ifflags
hasSV_GMAGIC
bit set, willmg_get
ondsv
if appropriate, else not.sv_catpvn
andsv_catpvn_nomg
are implemented in terms of this function.void sv_catpvn_flags(SV* sv, const char* ptr, STRLEN len, I32 flags)
- sv_catpvn_mg
Like
sv_catpvn
, but also handles 'set' magic.void sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)
- sv_catpvn_nomg
Like
sv_catpvn
but doesn't process magic.void sv_catpvn_nomg(SV* sv, const char* ptr, STRLEN len)
- sv_catpv_mg
Like
sv_catpv
, but also handles 'set' magic.void sv_catpv_mg(SV *sv, const char *ptr)
- sv_catsv
Concatenates the string from SV
ssv
onto the end of the string in SVdsv
. Modifiesdsv
but notssv
. Handles 'get' magic, but not 'set' magic. Seesv_catsv_mg
.void sv_catsv(SV* dsv, SV* ssv)
- sv_catsv_flags
Concatenates the string from SV
ssv
onto the end of the string in SVdsv
. Modifiesdsv
but notssv
. Ifflags
hasSV_GMAGIC
bit set, willmg_get
on the SVs if appropriate, else not.sv_catsv
andsv_catsv_nomg
are implemented in terms of this function.void sv_catsv_flags(SV* dsv, SV* ssv, I32 flags)
- sv_catsv_mg
Like
sv_catsv
, but also handles 'set' magic.void sv_catsv_mg(SV *dstr, SV *sstr)
- sv_catsv_nomg
Like
sv_catsv
but doesn't process magic.void sv_catsv_nomg(SV* dsv, SV* ssv)
- sv_chop
Efficient removal of characters from the beginning of the string buffer. SvPOK(sv) must be true and the
ptr
must be a pointer to somewhere inside the string buffer. Theptr
becomes the first character of the adjusted string. Uses the "OOK hack". Beware: after this function returns,ptr
and SvPVX_const(sv) may no longer refer to the same chunk of data.void sv_chop(SV* sv, char* ptr)
- sv_clear
Clear an SV: call any destructors, free up any memory used by the body, and free the body itself. The SV's head is not freed, although its type is set to all 1's so that it won't inadvertently be assumed to be live during global destruction etc. This function should only be called when REFCNT is zero. Most of the time you'll want to call
sv_free()
(or its macro wrapperSvREFCNT_dec
) instead.void sv_clear(SV* sv)
- sv_cmp
Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the string in
sv1
is less than, equal to, or greater than the string insv2
. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary. See alsosv_cmp_locale
.I32 sv_cmp(SV* sv1, SV* sv2)
- sv_cmp_locale
Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary. See also
sv_cmp_locale
. See alsosv_cmp
.I32 sv_cmp_locale(SV* sv1, SV* sv2)
- sv_collxfrm
Add Collate Transform magic to an SV if it doesn't already have it.
Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the scalar data of the variable, but transformed to such a format that a normal memory comparison can be used to compare the data according to the locale settings.
char* sv_collxfrm(SV* sv, STRLEN* nxp)
- sv_copypv
Copies a stringified representation of the source SV into the destination SV. Automatically performs any necessary mg_get and coercion of numeric values into strings. Guaranteed to preserve UTF-8 flag even from overloaded objects. Similar in nature to sv_2pv[_flags] but operates directly on an SV instead of just the string. Mostly uses sv_2pv_flags to do its work, except when that would lose the UTF-8'ness of the PV.
void sv_copypv(SV* dsv, SV* ssv)
- sv_dec
Auto-decrement of the value in the SV, doing string to numeric conversion if necessary. Handles 'get' magic.
void sv_dec(SV* sv)
- sv_derived_from
Returns a boolean indicating whether the SV is derived from the specified class. This is the function that implements
UNIVERSAL::isa
. It works for class names as well as for objects.bool sv_derived_from(SV* sv, const char* name)
- sv_eq
Returns a boolean indicating whether the strings in the two SVs are identical. Is UTF-8 and 'use bytes' aware, handles get magic, and will coerce its args to strings if necessary.
I32 sv_eq(SV* sv1, SV* sv2)
- sv_force_normal
Undo various types of fakery on an SV: if the PV is a shared string, make a private copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. See also
sv_force_normal_flags
.void sv_force_normal(SV *sv)
- sv_force_normal_flags
Undo various types of fakery on an SV: if the PV is a shared string, make a private copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. The
flags
parameter gets passed tosv_unref_flags()
when unrefing.sv_force_normal
calls this function with flags set to 0.void sv_force_normal_flags(SV *sv, U32 flags)
- sv_free
Decrement an SV's reference count, and if it drops to zero, call
sv_clear
to invoke destructors and free up any memory used by the body; finally, deallocate the SV's head itself. Normally called via a wrapper macroSvREFCNT_dec
.void sv_free(SV* sv)
- sv_gets
Get a line from the filehandle and store it into the SV, optionally appending to the currently-stored string.
char* sv_gets(SV* sv, PerlIO* fp, I32 append)
- sv_grow
Expands the character buffer in the SV. If necessary, uses
sv_unref
and upgrades the SV toSVt_PV
. Returns a pointer to the character buffer. Use theSvGROW
wrapper instead.char* sv_grow(SV* sv, STRLEN newlen)
- sv_inc
Auto-increment of the value in the SV, doing string to numeric conversion if necessary. Handles 'get' magic.
void sv_inc(SV* sv)
- sv_insert
Inserts a string at the specified offset/length within the SV. Similar to the Perl substr() function.
void sv_insert(SV* bigsv, STRLEN offset, STRLEN len, char* little, STRLEN littlelen)
- sv_isa
Returns a boolean indicating whether the SV is blessed into the specified class. This does not check for subtypes; use
sv_derived_from
to verify an inheritance relationship.int sv_isa(SV* sv, const char* name)
- sv_isobject
Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If the SV is not an RV, or if the object is not blessed, then this will return false.
int sv_isobject(SV* sv)
- sv_iv
A private implementation of the
SvIVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.IV sv_iv(SV* sv)
- sv_len
Returns the length of the string in the SV. Handles magic and type coercion. See also
SvCUR
, which gives raw access to the xpv_cur slot.STRLEN sv_len(SV* sv)
- sv_len_utf8
Returns the number of characters in the string in an SV, counting wide UTF-8 bytes as a single character. Handles magic and type coercion.
STRLEN sv_len_utf8(SV* sv)
- sv_magic
Adds magic to an SV. First upgrades
sv
to typeSVt_PVMG
if necessary, then adds a new magic item of typehow
to the head of the magic list.See
sv_magicext
(whichsv_magic
now calls) for a description of the handling of thename
andnamlen
arguments.You need to use
sv_magicext
to add magic to SvREADONLY SVs and also to add more than one instance of the same 'how'.void sv_magic(SV* sv, SV* obj, int how, const char* name, I32 namlen)
- sv_magicext
Adds magic to an SV, upgrading it if necessary. Applies the supplied vtable and returns a pointer to the magic added.
Note that
sv_magicext
will allow things thatsv_magic
will not. In particular, you can add magic to SvREADONLY SVs, and add more than one instance of the same 'how'.If
namlen
is greater than zero then asavepvn
copy ofname
is stored, ifnamlen
is zero thenname
is stored as-is and - as another special case - if(name && namlen == HEf_SVKEY)
thenname
is assumed to contain anSV*
and is stored as-is with its REFCNT incremented.(This is now used as a subroutine by
sv_magic
.)MAGIC * sv_magicext(SV* sv, SV* obj, int how, MGVTBL *vtbl, const char* name, I32 namlen)
- sv_mortalcopy
Creates a new SV which is a copy of the original SV (using
sv_setsv
). The new SV is marked as mortal. It will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. See alsosv_newmortal
andsv_2mortal
.SV* sv_mortalcopy(SV* oldsv)
- sv_newmortal
Creates a new null SV which is mortal. The reference count of the SV is set to 1. It will be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at places such as statement boundaries. See also
sv_mortalcopy
andsv_2mortal
.SV* sv_newmortal()
- sv_newref
Increment an SV's reference count. Use the
SvREFCNT_inc()
wrapper instead.SV* sv_newref(SV* sv)
- sv_nv
A private implementation of the
SvNVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.NV sv_nv(SV* sv)
- sv_pos_b2u
Converts the value pointed to by offsetp from a count of bytes from the start of the string, to a count of the equivalent number of UTF-8 chars. Handles magic and type coercion.
void sv_pos_b2u(SV* sv, I32* offsetp)
- sv_pos_u2b
Converts the value pointed to by offsetp from a count of UTF-8 chars from the start of the string, to a count of the equivalent number of bytes; if lenp is non-zero, it does the same to lenp, but this time starting from the offset, rather than from the start of the string. Handles magic and type coercion.
void sv_pos_u2b(SV* sv, I32* offsetp, I32* lenp)
- sv_pv
Use the
SvPV_nolen
macro insteadchar* sv_pv(SV *sv)
- sv_pvbyte
Use
SvPVbyte_nolen
instead.char* sv_pvbyte(SV *sv)
- sv_pvbyten
A private implementation of the
SvPVbyte
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvbyten(SV *sv, STRLEN *len)
- sv_pvbyten_force
A private implementation of the
SvPVbytex_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvbyten_force(SV* sv, STRLEN* lp)
- sv_pvn
A private implementation of the
SvPV
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvn(SV *sv, STRLEN *len)
- sv_pvn_force
Get a sensible string out of the SV somehow. A private implementation of the
SvPV_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvn_force(SV* sv, STRLEN* lp)
- sv_pvn_force_flags
Get a sensible string out of the SV somehow. If
flags
hasSV_GMAGIC
bit set, willmg_get
onsv
if appropriate, else not.sv_pvn_force
andsv_pvn_force_nomg
are implemented in terms of this function. You normally want to use the various wrapper macros instead: seeSvPV_force
andSvPV_force_nomg
char* sv_pvn_force_flags(SV* sv, STRLEN* lp, I32 flags)
- sv_pvutf8
Use the
SvPVutf8_nolen
macro insteadchar* sv_pvutf8(SV *sv)
- sv_pvutf8n
A private implementation of the
SvPVutf8
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvutf8n(SV *sv, STRLEN *len)
- sv_pvutf8n_force
A private implementation of the
SvPVutf8_force
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.char* sv_pvutf8n_force(SV* sv, STRLEN* lp)
- sv_reftype
Returns a string describing what the SV is a reference to.
char* sv_reftype(SV* sv, int ob)
- sv_replace
Make the first argument a copy of the second, then delete the original. The target SV physically takes over ownership of the body of the source SV and inherits its flags; however, the target keeps any magic it owns, and any magic in the source is discarded. Note that this is a rather specialist SV copying operation; most of the time you'll want to use
sv_setsv
or one of its many macro front-ends.void sv_replace(SV* sv, SV* nsv)
- sv_report_used
Dump the contents of all SVs not yet freed. (Debugging aid).
void sv_report_used()
- sv_reset
Underlying implementation for the
reset
Perl function. Note that the perl-level function is vaguely deprecated.void sv_reset(char* s, HV* stash)
- sv_rvweaken
Weaken a reference: set the
SvWEAKREF
flag on this RV; give the referred-to SVPERL_MAGIC_backref
magic if it hasn't already; and push a back-reference to this RV onto the array of backreferences associated with that magic.SV* sv_rvweaken(SV *sv)
- sv_setiv
Copies an integer into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also
sv_setiv_mg
.void sv_setiv(SV* sv, IV num)
- sv_setiv_mg
Like
sv_setiv
, but also handles 'set' magic.void sv_setiv_mg(SV *sv, IV i)
- sv_setnv
Copies a double into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also
sv_setnv_mg
.void sv_setnv(SV* sv, NV num)
- sv_setnv_mg
Like
sv_setnv
, but also handles 'set' magic.void sv_setnv_mg(SV *sv, NV num)
- sv_setpv
Copies a string into an SV. The string must be null-terminated. Does not handle 'set' magic. See
sv_setpv_mg
.void sv_setpv(SV* sv, const char* ptr)
- sv_setpvf
Works like
sv_catpvf
but copies the text into the SV instead of appending it. Does not handle 'set' magic. Seesv_setpvf_mg
.void sv_setpvf(SV* sv, const char* pat, ...)
- sv_setpvf_mg
Like
sv_setpvf
, but also handles 'set' magic.void sv_setpvf_mg(SV *sv, const char* pat, ...)
- sv_setpviv
Copies an integer into the given SV, also updating its string value. Does not handle 'set' magic. See
sv_setpviv_mg
.void sv_setpviv(SV* sv, IV num)
- sv_setpviv_mg
Like
sv_setpviv
, but also handles 'set' magic.void sv_setpviv_mg(SV *sv, IV iv)
- sv_setpvn
Copies a string into an SV. The
len
parameter indicates the number of bytes to be copied. If theptr
argument is NULL the SV will become undefined. Does not handle 'set' magic. Seesv_setpvn_mg
.void sv_setpvn(SV* sv, const char* ptr, STRLEN len)
- sv_setpvn_mg
Like
sv_setpvn
, but also handles 'set' magic.void sv_setpvn_mg(SV *sv, const char *ptr, STRLEN len)
- sv_setpv_mg
Like
sv_setpv
, but also handles 'set' magic.void sv_setpv_mg(SV *sv, const char *ptr)
- sv_setref_iv
Copies an integer into a new SV, optionally blessing the SV. The
rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. Theclassname
argument indicates the package for the blessing. Setclassname
toNullch
to avoid the blessing. The new SV will have a reference count of 1, and the RV will be returned.SV* sv_setref_iv(SV* rv, const char* classname, IV iv)
- sv_setref_nv
Copies a double into a new SV, optionally blessing the SV. The
rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. Theclassname
argument indicates the package for the blessing. Setclassname
toNullch
to avoid the blessing. The new SV will have a reference count of 1, and the RV will be returned.SV* sv_setref_nv(SV* rv, const char* classname, NV nv)
- sv_setref_pv
Copies a pointer into a new SV, optionally blessing the SV. The
rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. If thepv
argument is NULL thenPL_sv_undef
will be placed into the SV. Theclassname
argument indicates the package for the blessing. Setclassname
toNullch
to avoid the blessing. The new SV will have a reference count of 1, and the RV will be returned.Do not use with other Perl types such as HV, AV, SV, CV, because those objects will become corrupted by the pointer copy process.
Note that
sv_setref_pvn
copies the string while this copies the pointer.SV* sv_setref_pv(SV* rv, const char* classname, void* pv)
- sv_setref_pvn
Copies a string into a new SV, optionally blessing the SV. The length of the string must be specified with
n
. Therv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. Theclassname
argument indicates the package for the blessing. Setclassname
toNullch
to avoid the blessing. The new SV will have a reference count of 1, and the RV will be returned.Note that
sv_setref_pv
copies the pointer while this copies the string.SV* sv_setref_pvn(SV* rv, const char* classname, char* pv, STRLEN n)
- sv_setref_uv
Copies an unsigned integer into a new SV, optionally blessing the SV. The
rv
argument will be upgraded to an RV. That RV will be modified to point to the new SV. Theclassname
argument indicates the package for the blessing. Setclassname
toNullch
to avoid the blessing. The new SV will have a reference count of 1, and the RV will be returned.SV* sv_setref_uv(SV* rv, const char* classname, UV uv)
- sv_setsv
Copies the contents of the source SV
ssv
into the destination SVdsv
. The source SV may be destroyed if it is mortal, so don't use this function if the source SV needs to be reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value, obliterating any previous content of the destination.You probably want to use one of the assortment of wrappers, such as
SvSetSV
,SvSetSV_nosteal
,SvSetMagicSV
andSvSetMagicSV_nosteal
.void sv_setsv(SV* dsv, SV* ssv)
- sv_setsv_flags
Copies the contents of the source SV
ssv
into the destination SVdsv
. The source SV may be destroyed if it is mortal, so don't use this function if the source SV needs to be reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value, obliterating any previous content of the destination. If theflags
parameter has theSV_GMAGIC
bit set, willmg_get
onssv
if appropriate, else not. If theflags
parameter has theNOSTEAL
bit set then the buffers of temps will not be stolen. <sv_setsv> andsv_setsv_nomg
are implemented in terms of this function.You probably want to use one of the assortment of wrappers, such as
SvSetSV
,SvSetSV_nosteal
,SvSetMagicSV
andSvSetMagicSV_nosteal
.This is the primary function for copying scalars, and most other copy-ish functions and macros use this underneath.
void sv_setsv_flags(SV* dsv, SV* ssv, I32 flags)
- sv_setsv_mg
Like
sv_setsv
, but also handles 'set' magic.void sv_setsv_mg(SV *dstr, SV *sstr)
- sv_setsv_nomg
Like
sv_setsv
but doesn't process magic.void sv_setsv_nomg(SV* dsv, SV* ssv)
- sv_setuv
Copies an unsigned integer into the given SV, upgrading first if necessary. Does not handle 'set' magic. See also
sv_setuv_mg
.void sv_setuv(SV* sv, UV num)
- sv_setuv_mg
Like
sv_setuv
, but also handles 'set' magic.void sv_setuv_mg(SV *sv, UV u)
- sv_taint
Taint an SV. Use
SvTAINTED_on
instead. void sv_taint(SV* sv) - sv_tainted
Test an SV for taintedness. Use
SvTAINTED
instead. bool sv_tainted(SV* sv) - sv_true
Returns true if the SV has a true value by Perl's rules. Use the
SvTRUE
macro instead, which may callsv_true()
or may instead use an in-line version.I32 sv_true(SV *sv)
- sv_unmagic
Removes all magic of type
type
from an SV.int sv_unmagic(SV* sv, int type)
- sv_unref
Unsets the RV status of the SV, and decrements the reference count of whatever was being referenced by the RV. This can almost be thought of as a reversal of
newSVrv
. This issv_unref_flags
with theflag
being zero. SeeSvROK_off
.void sv_unref(SV* sv)
- sv_unref_flags
Unsets the RV status of the SV, and decrements the reference count of whatever was being referenced by the RV. This can almost be thought of as a reversal of
newSVrv
. Thecflags
argument can containSV_IMMEDIATE_UNREF
to force the reference count to be decremented (otherwise the decrementing is conditional on the reference count being different from one or the reference being a readonly SV). SeeSvROK_off
.void sv_unref_flags(SV* sv, U32 flags)
- sv_untaint
Untaint an SV. Use
SvTAINTED_off
instead. void sv_untaint(SV* sv) - sv_upgrade
Upgrade an SV to a more complex form. Generally adds a new body type to the SV, then copies across as much information as possible from the old body. You generally want to use the
SvUPGRADE
macro wrapper. See alsosvtype
.bool sv_upgrade(SV* sv, U32 mt)
- sv_usepvn
Tells an SV to use
ptr
to find its string value. Normally the string is stored inside the SV but sv_usepvn allows the SV to use an outside string. Theptr
should point to memory that was allocated bymalloc
. The string length,len
, must be supplied. This function will realloc the memory pointed to byptr
, so that pointer should not be freed or used by the programmer after giving it to sv_usepvn. Does not handle 'set' magic. Seesv_usepvn_mg
.void sv_usepvn(SV* sv, char* ptr, STRLEN len)
- sv_usepvn_mg
Like
sv_usepvn
, but also handles 'set' magic.void sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)
- sv_utf8_decode
If the PV of the SV is an octet sequence in UTF-8 and contains a multiple-byte character, the
SvUTF8
flag is turned on so that it looks like a character. If the PV contains only single-byte characters, theSvUTF8
flag stays being off. Scans PV for validity and returns false if the PV is invalid UTF-8.NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8_decode(SV *sv)
- sv_utf8_downgrade
Attempts to convert the PV of an SV from characters to bytes. If the PV contains a character beyond byte, this conversion will fail; in this case, either returns false or, if
fail_ok
is not true, croaks.This is not as a general purpose Unicode to byte encoding interface: use the Encode extension for that.
NOTE: this function is experimental and may change or be removed without notice.
bool sv_utf8_downgrade(SV *sv, bool fail_ok)
- sv_utf8_encode
Converts the PV of an SV to UTF-8, but then turns the
SvUTF8
flag off so that it looks like octets again.void sv_utf8_encode(SV *sv)
- sv_utf8_upgrade
Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all the bytes have hibit clear.
This is not as a general purpose byte encoding to Unicode interface: use the Encode extension for that.
STRLEN sv_utf8_upgrade(SV *sv)
- sv_utf8_upgrade_flags
Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all the bytes have hibit clear. If
flags
hasSV_GMAGIC
bit set, willmg_get
onsv
if appropriate, else not.sv_utf8_upgrade
andsv_utf8_upgrade_nomg
are implemented in terms of this function.This is not as a general purpose byte encoding to Unicode interface: use the Encode extension for that.
STRLEN sv_utf8_upgrade_flags(SV *sv, I32 flags)
- sv_uv
A private implementation of the
SvUVx
macro for compilers which can't cope with complex macro expressions. Always use the macro instead.UV sv_uv(SV* sv)
- sv_vcatpvf
Processes its arguments like
vsprintf
and appends the formatted output to an SV. Does not handle 'set' magic. Seesv_vcatpvf_mg
.Usually used via its frontend
sv_catpvf
.void sv_vcatpvf(SV* sv, const char* pat, va_list* args)
- sv_vcatpvfn
Processes its arguments like
vsprintf
and appends the formatted output to an SV. Uses an array of SVs if the C style variable argument list is missing (NULL). When running with taint checks enabled, indicates viamaybe_tainted
if results are untrustworthy (often due to the use of locales).XXX Except that it maybe_tainted is never assigned to.
Usually used via one of its frontends
sv_vcatpvf
andsv_vcatpvf_mg
.void sv_vcatpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)
- sv_vcatpvf_mg
Like
sv_vcatpvf
, but also handles 'set' magic.Usually used via its frontend
sv_catpvf_mg
.void sv_vcatpvf_mg(SV* sv, const char* pat, va_list* args)
- sv_vsetpvf
Works like
sv_vcatpvf
but copies the text into the SV instead of appending it. Does not handle 'set' magic. Seesv_vsetpvf_mg
.Usually used via its frontend
sv_setpvf
.void sv_vsetpvf(SV* sv, const char* pat, va_list* args)
- sv_vsetpvfn
Works like
sv_vcatpvfn
but copies the text into the SV instead of appending it.Usually used via one of its frontends
sv_vsetpvf
andsv_vsetpvf_mg
.void sv_vsetpvfn(SV* sv, const char* pat, STRLEN patlen, va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)
- sv_vsetpvf_mg
Like
sv_vsetpvf
, but also handles 'set' magic.Usually used via its frontend
sv_setpvf_mg
.void sv_vsetpvf_mg(SV* sv, const char* pat, va_list* args)
Unicode Support
- bytes_from_utf8
Converts a string
s
of lengthlen
from UTF-8 into byte encoding. Unlikeutf8_to_bytes
but likebytes_to_utf8
, returns a pointer to the newly-created string, and updateslen
to contain the new length. Returns the original string if no conversion occurs,len
is unchanged. Do nothing ifis_utf8
points to 0. Setsis_utf8
to 0 ifs
is converted or contains all 7bit characters.NOTE: this function is experimental and may change or be removed without notice.
U8* bytes_from_utf8(U8 *s, STRLEN *len, bool *is_utf8)
- bytes_to_utf8
Converts a string
s
of lengthlen
from ASCII into UTF-8 encoding. Returns a pointer to the newly-created string, and setslen
to reflect the new length.If you want to convert to UTF-8 from other encodings than ASCII, see sv_recode_to_utf8().
NOTE: this function is experimental and may change or be removed without notice.
U8* bytes_to_utf8(U8 *s, STRLEN *len)
- ibcmp_utf8
Return true if the strings s1 and s2 differ case-insensitively, false if not (if they are equal case-insensitively). If u1 is true, the string s1 is assumed to be in UTF-8-encoded Unicode. If u2 is true, the string s2 is assumed to be in UTF-8-encoded Unicode. If u1 or u2 are false, the respective string is assumed to be in native 8-bit encoding.
If the pe1 and pe2 are non-NULL, the scanning pointers will be copied in there (they will point at the beginning of the next character). If the pointers behind pe1 or pe2 are non-NULL, they are the end pointers beyond which scanning will not continue under any circumstances. If the byte lengths l1 and l2 are non-zero, s1+l1 and s2+l2 will be used as goal end pointers that will also stop the scan, and which qualify towards defining a successful match: all the scans that define an explicit length must reach their goal pointers for a match to succeed).
For case-insensitiveness, the "casefolding" of Unicode is used instead of upper/lowercasing both the characters, see http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).
I32 ibcmp_utf8(const char* a, char **pe1, UV l1, bool u1, const char* b, char **pe2, UV l2, bool u2)
- is_utf8_char
Tests if some arbitrary number of bytes begins in a valid UTF-8 character. Note that an INVARIANT (i.e. ASCII) character is a valid UTF-8 character. The actual number of bytes in the UTF-8 character will be returned if it is valid, otherwise 0.
STRLEN is_utf8_char(U8 *p)
- is_utf8_string
Returns true if first
len
bytes of the given string form a valid UTF-8 string, false otherwise. Note that 'a valid UTF-8 string' does not mean 'a string that contains code points above 0x7F encoded in UTF-8' because a valid ASCII string is a valid UTF-8 string.See also is_utf8_string_loclen() and is_utf8_string_loc().
bool is_utf8_string(U8 *s, STRLEN len)
- is_utf8_string_loc
Like is_utf8_string() but stores the location of the failure (in the case of "utf8ness failure") or the location s+len (in the case of "utf8ness success") in the
ep
.See also is_utf8_string_loclen() and is_utf8_string().
bool is_utf8_string_loc(U8 *s, STRLEN len, U8 **p)
- is_utf8_string_loclen
Like is_utf8_string() but stores the location of the failure (in the case of "utf8ness failure") or the location s+len (in the case of "utf8ness success") in the
ep
, and the number of UTF-8 encoded characters in theel
.See also is_utf8_string_loc() and is_utf8_string().
bool is_utf8_string_loclen(const U8 *s, STRLEN len, const U8 **ep, STRLEN *el)
- pv_uni_display
Build to the scalar dsv a displayable version of the string spv, length len, the displayable version being at most pvlim bytes long (if longer, the rest is truncated and "..." will be appended).
The flags argument can have UNI_DISPLAY_ISPRINT set to display isPRINT()able characters as themselves, UNI_DISPLAY_BACKSLASH to display the \\[nrfta\\] as the backslashed versions (like '\n') (UNI_DISPLAY_BACKSLASH is preferred over UNI_DISPLAY_ISPRINT for \\). UNI_DISPLAY_QQ (and its alias UNI_DISPLAY_REGEX) have both UNI_DISPLAY_BACKSLASH and UNI_DISPLAY_ISPRINT turned on.
The pointer to the PV of the dsv is returned.
char* pv_uni_display(SV *dsv, U8 *spv, STRLEN len, STRLEN pvlim, UV flags)
- sv_cat_decode
The encoding is assumed to be an Encode object, the PV of the ssv is assumed to be octets in that encoding and decoding the input starts from the position which (PV + *offset) pointed to. The dsv will be concatenated the decoded UTF-8 string from ssv. Decoding will terminate when the string tstr appears in decoding output or the input ends on the PV of the ssv. The value which the offset points will be modified to the last input position on the ssv.
Returns TRUE if the terminator was found, else returns FALSE.
bool sv_cat_decode(SV* dsv, SV *encoding, SV *ssv, int *offset, char* tstr, int tlen)
- sv_recode_to_utf8
The encoding is assumed to be an Encode object, on entry the PV of the sv is assumed to be octets in that encoding, and the sv will be converted into Unicode (and UTF-8).
If the sv already is UTF-8 (or if it is not POK), or if the encoding is not a reference, nothing is done to the sv. If the encoding is not an
Encode::XS
Encoding object, bad things will happen. (See lib/encoding.pm and Encode).The PV of the sv is returned.
char* sv_recode_to_utf8(SV* sv, SV *encoding)
- sv_uni_display
Build to the scalar dsv a displayable version of the scalar sv, the displayable version being at most pvlim bytes long (if longer, the rest is truncated and "..." will be appended).
The flags argument is as in pv_uni_display().
The pointer to the PV of the dsv is returned.
char* sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
- to_utf8_case
The "p" contains the pointer to the UTF-8 string encoding the character that is being converted.
The "ustrp" is a pointer to the character buffer to put the conversion result to. The "lenp" is a pointer to the length of the result.
The "swashp" is a pointer to the swash to use.
Both the special and normal mappings are stored lib/unicore/To/Foo.pl, and loaded by SWASHGET, using lib/utf8_heavy.pl. The special (usually, but not always, a multicharacter mapping), is tried first.
The "special" is a string like "utf8::ToSpecLower", which means the hash %utf8::ToSpecLower. The access to the hash is through Perl_to_utf8_case().
The "normal" is a string like "ToLower" which means the swash %utf8::ToLower.
UV to_utf8_case(U8 *p, U8* ustrp, STRLEN *lenp, SV **swashp, char *normal, char *special)
- to_utf8_fold
Convert the UTF-8 encoded character at p to its foldcase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the foldcase version may be longer than the original character (up to three characters).
The first character of the foldcased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_fold(U8 *p, U8* ustrp, STRLEN *lenp)
- to_utf8_lower
Convert the UTF-8 encoded character at p to its lowercase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the lowercase version may be longer than the original character.
The first character of the lowercased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_lower(U8 *p, U8* ustrp, STRLEN *lenp)
- to_utf8_title
Convert the UTF-8 encoded character at p to its titlecase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the titlecase version may be longer than the original character.
The first character of the titlecased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_title(U8 *p, U8* ustrp, STRLEN *lenp)
- to_utf8_upper
Convert the UTF-8 encoded character at p to its uppercase version and store that in UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least UTF8_MAXBYTES_CASE+1 bytes since the uppercase version may be longer than the original character.
The first character of the uppercased version is returned (but note, as explained above, that there may be more.)
UV to_utf8_upper(U8 *p, U8* ustrp, STRLEN *lenp)
- utf8n_to_uvchr
Returns the native character value of the first character in the string
s
which is assumed to be in UTF-8 encoding;retlen
will be set to the length, in bytes, of that character.Allows length and flags to be passed to low level routine.
UV utf8n_to_uvchr(U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
- utf8n_to_uvuni
Bottom level UTF-8 decode routine. Returns the unicode code point value of the first character in the string
s
which is assumed to be in UTF-8 encoding and no longer thancurlen
;retlen
will be set to the length, in bytes, of that character.If
s
does not point to a well-formed UTF-8 character, the behaviour is dependent on the value offlags
: if it contains UTF8_CHECK_ONLY, it is assumed that the caller will raise a warning, and this function will silently just setretlen
to-1
and return zero. If theflags
does not contain UTF8_CHECK_ONLY, warnings about malformations will be given,retlen
will be set to the expected length of the UTF-8 character in bytes, and zero will be returned.The
flags
can also contain various flags to allow deviations from the strict UTF-8 encoding (see utf8.h).Most code should use utf8_to_uvchr() rather than call this directly.
UV utf8n_to_uvuni(U8 *s, STRLEN curlen, STRLEN *retlen, U32 flags)
- utf8_distance
Returns the number of UTF-8 characters between the UTF-8 pointers
a
andb
.WARNING: use only if you *know* that the pointers point inside the same UTF-8 buffer.
IV utf8_distance(U8 *a, U8 *b)
- utf8_hop
Return the UTF-8 pointer
s
displaced byoff
characters, either forward or backward.WARNING: do not use the following unless you *know*
off
is within the UTF-8 data pointed to bys
*and* that on entrys
is aligned on the first byte of character or just after the last byte of a character.U8* utf8_hop(U8 *s, I32 off)
- utf8_length
Return the length of the UTF-8 char encoded string
s
in characters. Stops ate
(inclusive). Ife < s
or if the scan would end up paste
, croaks.STRLEN utf8_length(U8* s, U8 *e)
- utf8_to_bytes
Converts a string
s
of lengthlen
from UTF-8 into byte encoding. Unlikebytes_to_utf8
, this over-writes the original string, and updates len to contain the new length. Returns zero on failure, settinglen
to -1.NOTE: this function is experimental and may change or be removed without notice.
U8* utf8_to_bytes(U8 *s, STRLEN *len)
- utf8_to_uvchr
Returns the native character value of the first character in the string
s
which is assumed to be in UTF-8 encoding;retlen
will be set to the length, in bytes, of that character.If
s
does not point to a well-formed UTF-8 character, zero is returned and retlen is set, if possible, to -1.UV utf8_to_uvchr(U8 *s, STRLEN *retlen)
- utf8_to_uvuni
Returns the Unicode code point of the first character in the string
s
which is assumed to be in UTF-8 encoding;retlen
will be set to the length, in bytes, of that character.This function should only be used when returned UV is considered an index into the Unicode semantic tables (e.g. swashes).
If
s
does not point to a well-formed UTF-8 character, zero is returned and retlen is set, if possible, to -1.UV utf8_to_uvuni(U8 *s, STRLEN *retlen)
- uvchr_to_utf8
Adds the UTF-8 representation of the Native codepoint
uv
to the end of the stringd
;d
should be have at leastUTF8_MAXBYTES+1
free bytes available. The return value is the pointer to the byte after the end of the new character. In other words,d = uvchr_to_utf8(d, uv);
is the recommended wide native character-aware way of saying
*(d++) = uv;
U8* uvchr_to_utf8(U8 *d, UV uv)
- uvuni_to_utf8_flags
Adds the UTF-8 representation of the Unicode codepoint
uv
to the end of the stringd
;d
should be have at leastUTF8_MAXBYTES+1
free bytes available. The return value is the pointer to the byte after the end of the new character. In other words,d = uvuni_to_utf8_flags(d, uv, flags);
or, in most cases,
d = uvuni_to_utf8(d, uv);
(which is equivalent to)
d = uvuni_to_utf8_flags(d, uv, 0);
is the recommended Unicode-aware way of saying
*(d++) = uv;
U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)
Variables created by xsubpp
and xsubpp
internal functions
- ax
Variable which is setup by
xsubpp
to indicate the stack base offset, used by theST
,XSprePUSH
andXSRETURN
macros. ThedMARK
macro must be called prior to setup theMARK
variable.I32 ax
- CLASS
Variable which is setup by
xsubpp
to indicate the class name for a C++ XS constructor. This is always achar*
. SeeTHIS
.char* CLASS
- dAX
Sets up the
ax
variable. This is usually handled automatically byxsubpp
by callingdXSARGS
.dAX;
- dAXMARK
Sets up the
ax
variable and stack marker variablemark
. This is usually handled automatically byxsubpp
by callingdXSARGS
.dAXMARK;
- dITEMS
Sets up the
items
variable. This is usually handled automatically byxsubpp
by callingdXSARGS
.dITEMS;
- dXSARGS
Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. Sets up the
ax
anditems
variables by callingdAX
anddITEMS
. This is usually handled automatically byxsubpp
.dXSARGS;
- dXSI32
Sets up the
ix
variable for an XSUB which has aliases. This is usually handled automatically byxsubpp
.dXSI32;
- items
Variable which is setup by
xsubpp
to indicate the number of items on the stack. See "Variable-length Parameter Lists" in perlxs.I32 items
- ix
Variable which is setup by
xsubpp
to indicate which of an XSUB's aliases was used to invoke it. See "The ALIAS: Keyword" in perlxs.I32 ix
- newXSproto
Used by
xsubpp
to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs. - RETVAL
Variable which is setup by
xsubpp
to hold the return value for an XSUB. This is always the proper type for the XSUB. See "The RETVAL Variable" in perlxs.(whatever) RETVAL
- ST
Used to access elements on the XSUB's stack.
SV* ST(int ix)
- THIS
Variable which is setup by
xsubpp
to designate the object in a C++ XSUB. This is always the proper type for the C++ object. SeeCLASS
and "Using XS With C++" in perlxs.(whatever) THIS
- XS
Macro to declare an XSUB and its C parameter list. This is handled by
xsubpp
. - XS_VERSION
The version identifier for an XS module. This is usually handled automatically by
ExtUtils::MakeMaker
. SeeXS_VERSION_BOOTCHECK
. - XS_VERSION_BOOTCHECK
Macro to verify that a PM module's $VERSION variable matches the XS module's
XS_VERSION
variable. This is usually handled automatically byxsubpp
. See "The VERSIONCHECK: Keyword" in perlxs.XS_VERSION_BOOTCHECK;
Warning and Dieing
- croak
This is the XSUB-writer's interface to Perl's
die
function. Normally call this function the same way you call the Cprintf
function. Callingcroak
returns control directly to Perl, sidestepping the normal C order of execution. Seewarn
.If you want to throw an exception object, assign the object to
$@
and then passNullch
to croak():errsv = get_sv("@", TRUE); sv_setsv(errsv, exception_object); croak(Nullch);
void croak(const char* pat, ...)
- warn
This is the XSUB-writer's interface to Perl's
warn
function. Call this function the same way you call the Cprintf
function. Seecroak
.void warn(const char* pat, ...)
AUTHORS
Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>. It is now maintained as part of Perl itself.
With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy.
API Listing originally by Dean Roehrich <roehrich@cray.com>.
Updated to be autogenerated from comments in the source by Benjamin Stuhl.
SEE ALSO
perlguts(1), perlxs(1), perlxstut(1), perlintern(1)