
Perl version 5.8.8 documentation - Scalar::Util

Page 1http://perldoc.perl.org

NAME
Scalar::Util - A selection of general-utility scalar subroutines

SYNOPSIS
 use Scalar::Util qw(blessed dualvar isweak readonly refaddr reftype
tainted
 weaken isvstring looks_like_number set_prototype);

DESCRIPTION
Scalar::Util contains a selection of subroutines that people have
 expressed would be nice to
have in the perl core, but the usage would
 not really be high enough to warrant the use of a keyword,
and the size
 so small such that being individual extensions would be wasteful.

By default Scalar::Util does not export any subroutines. The
 subroutines defined are

blessed EXPR

If EXPR evaluates to a blessed reference the name of the package
 that it is blessed into is
returned. Otherwise undef is returned.

 $scalar = "foo";
 $class = blessed $scalar; # undef

 $ref = [];
 $class = blessed $ref; # undef

 $obj = bless [], "Foo";
 $class = blessed $obj; # "Foo"

dualvar NUM, STRING

Returns a scalar that has the value NUM in a numeric context and the
 value STRING in a
string context.

 $foo = dualvar 10, "Hello";
 $num = $foo + 2; # 12
 $str = $foo . " world"; # Hello world

isvstring EXPR

If EXPR is a scalar which was coded as a vstring the result is true.

 $vs = v49.46.48;
 $fmt = isvstring($vs) ? "%vd" : "%s"; #true
 printf($fmt,$vs);

isweak EXPR

If EXPR is a scalar which is a weak reference the result is true.

 $ref = \$foo;
 $weak = isweak($ref); # false
 weaken($ref);
 $weak = isweak($ref); # true

NOTE: Copying a weak reference creates a normal, strong, reference.

 $copy = $ref;
 $weak = isweak($ref); # false

Perl version 5.8.8 documentation - Scalar::Util

Page 2http://perldoc.perl.org

looks_like_number EXPR

Returns true if perl thinks EXPR is a number. See "looks_like_number" in perlapi.

openhandle FH

Returns FH if FH may be used as a filehandle and is open, or FH is a tied
 handle. Otherwise
undef is returned.

 $fh = openhandle(*STDIN);		 # *STDIN
 $fh = openhandle(*STDIN);		 # *STDIN
 $fh = openhandle(*NOTOPEN);		 # undef
 $fh = openhandle("scalar");		 # undef

readonly SCALAR

Returns true if SCALAR is readonly.

 sub foo { readonly($_[0]) }

 $readonly = foo($bar); # false
 $readonly = foo(0); # true

refaddr EXPR

If EXPR evaluates to a reference the internal memory address of
 the referenced value is
returned. Otherwise undef is returned.

 $addr = refaddr "string"; # undef
 $addr = refaddr \$var; # eg 12345678
 $addr = refaddr []; # eg 23456784

 $obj = bless {}, "Foo";
 $addr = refaddr $obj; # eg 88123488

reftype EXPR

If EXPR evaluates to a reference the type of the variable referenced
 is returned. Otherwise
undef is returned.

 $type = reftype "string"; # undef
 $type = reftype \$var; # SCALAR
 $type = reftype []; # ARRAY

 $obj = bless {}, "Foo";
 $type = reftype $obj; # HASH

set_prototype CODEREF, PROTOTYPE

Sets the prototype of the given function, or deletes it if PROTOTYPE is
 undef. Returns the
CODEREF.

 set_prototype \&foo, '$$';

tainted EXPR

Return true if the result of EXPR is tainted

 $taint = tainted("constant"); # false
 $taint = tainted($ENV{PWD}); # true if running under -T

weaken REF

REF will be turned into a weak reference. This means that it will not
 hold a reference count on

Perl version 5.8.8 documentation - Scalar::Util

Page 3http://perldoc.perl.org

the object it references. Also when the reference
 count on that object reaches zero, REF will
be set to undef.

This is useful for keeping copies of references , but you don't want to
 prevent the object being
DESTROY-ed at its usual time.

 {
 my $var;
 $ref = \$var;
 weaken($ref); # Make $ref a weak reference
 }
 # $ref is now undef

Note that if you take a copy of a scalar with a weakened reference,
 the copy will be a strong
reference.

 my $var;
 my $foo = \$var;
 weaken($foo); # Make $foo a weak reference
 my $bar = $foo; # $bar is now a strong
reference

This may be less obvious in other situations, such as grep(), for instance
 when grepping
through a list of weakened references to objects that may have
 been destroyed already:

 @object = grep { defined } @object;

This will indeed remove all references to destroyed objects, but the remaining
 references to
objects will be strong, causing the remaining objects to never
 be destroyed because there is
now always a strong reference to them in the
 @object array.

KNOWN BUGS
There is a bug in perl5.6.0 with UV's that are >= 1<<31. This will
 show up as tests 8 and 9 of dualvar.t
failing

COPYRIGHT
Copyright (c) 1997-2005 Graham Barr <gbarr@pobox.com>. All rights reserved.
 This program is free
software; you can redistribute it and/or modify it
 under the same terms as Perl itself.

Except weaken and isweak which are

Copyright (c) 1999 Tuomas J. Lukka <lukka@iki.fi>. All rights reserved.
 This program is free software;
you can redistribute it and/or modify it
 under the same terms as perl itself.

BLATANT PLUG
The weaken and isweak subroutines in this module and the patch to the core Perl
 were written in
connection with the APress book `Tuomas J. Lukka's Definitive
 Guide to Object-Oriented
Programming in Perl', to avoid explaining why certain
 things would have to be done in cumbersome
ways.

